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1. Introduction

The most fundamental quantity for the thermodynamics of a finite temperature gauge

theory is its free energy. Its partial derivatives give measurable values of thermodynamic

quantities and its singularities indicate possible phase transitions. Extensive work has been

devoted to the study of the free energy (F = fV = −pV ) of QCD and electroweak theory

in various temperature ranges and with various levels of rigor.

For QCD and low T , (T < Tc ∼ ΛQCD) one can use hadron gas models, the region

around T = Tc can and has to be studied with first principle lattice Monte Carlo methods [1,

2] and at large T the method with controllable accuracy is the effective theory one [3, 4].

This is based on asymptotic freedom and on separating the relevant scales πT , the electric

scale mE = gT and the magnetic scale mM = g2T . The computation of the coefficients of

the expansion in g has a long history: the results of orders g2 [5], g3 [6], g4 ln g [7], g4 [8],

g5 [9, 4] and g6 ln g [10, 11] are known. The calculation has also been generalized to the

case when the chemical potentials associated with quarks are nonzero [12]. This expansion

has several interesting finite-T -effects: odd powers of g appear, the logarithmic terms are

logs of the ratios of the matching scales, log(T/mE) and log(mE/mM), and, finally, the

coefficient of the g6 term is not perturbatively calculable [13], since vacuum diagrams of

all orders in the loop expansion contribute to it. This is due to the fact that the effective

theory of the magnetic sector is confining. However, the coefficient of the g6 term can be

determined by a combination of numerical and several involved analytic computations [14].

One then has the pressure as a well defined expansion in the coupling constant g determined

in the MS scheme.

While both QCD and the electroweak sector of the standard model are gauge field

theories, there is a crucial difference between them: the Landau pole of QCD corre-

sponds to a length scale 1/ΛQCD ≈ 10−15 m, the length scale of a nucleon, while for

the electroweak theory 1/ΛEW ≈ 106 m, comparable to the radius of the Earth. Thus,

while confinement effects are important in the QCD case near Tc, rendering perturba-

tive calculations unreliable, they are negligible in the electroweak case and therefore it

is, at least in principle, possible to apply perturbative methods down to Tc and even

below that. Due to this there has been an extensive amount of work devoted to cal-

culating the properties of the electroweak phase transition using, for example, pertur-

bative 1-loop [15 – 18] and 2-loop [19 – 21] effective potential calculations. Those meth-

ods are reliable only for small Higgs masses and the complete solution of the problem

required first a perturbative matching of the full 4-dimensional theory to an effective 3-

dimensional theory [22] and then numerically solving the phase diagram from the effective

theory using lattice Monte Carlo techniques [23 – 27]. The phase diagram was observed

to have a first order line which ends in a 2nd order critical point of Ising universality

class [28]. Similar techniques have been used to solve the phase diagram also when the

external U(1) magnetic field [29] or the chemical potentials related to the baryon and lep-

ton numbers [30] are nonzero. The phase diagram has also been solved with numerical

studies of the full 4-dimensional theory [31]. Grand unified theories have been studied

in [32, 33].
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The structure of the phase diagram and the properties of the phase transition (latent

heat, interface tension, correlation lengths, order parameter discontinuities) only depend

on the discontinuities of the free energy, not on its value. In the effective theory approach

there is thus an important theoretical step missing, the matching of the value of the free

energy itself. For QCD this problem was formulated and solved in [4, 10]. The purpose

of this paper is to do the same for the standard model. At the same time we obtain the

pressure to order g5.

To this end we have to carry out a number of rather extensive computations. First,

we compute the 3-loop free energy in the full 4d standard model by evaluating the 3-loop

finite-T sum-integrals in the MS scheme. Schematically, we need F = 1 + g2 + g4(1/ε + 1),

where the g4 coefficient contains 1/ε terms due to infrared (IR) divergences which then

cancel against the ultraviolet (UV) divergences of the effective theory. The UV divergences

of the full theory are cancelled by the standard renormalization procedure. Second, we

determine the 2-loop screening masses of the gauge fields A0, B0 in the full 4d theory

in the MS scheme. Schematically, we need m2 = g2(1 + ε) + g4. We then repeat the

same for the fundamental scalar mass, which is present already on the tree-level but gets

thermal corrections. Unlike the screening masses, it has additional divergences, so we need

m2 = −ν2 + g2(1 + ε) + g4(1/ε + 1). Finally, we compute the 3-loop free energy in the 3d

effective theory. Schematically, we need f = m3 + g2
3m

2 + g4
3m.

Our final result will have some qualitative differences to the pressure of hot QCD.

There is a mass scale ν independent of T in the lagrangian which gives rise to terms such

as ν2T 2, not present in pQCD. Another difference is related to renormalization of the

fundamental scalar mass in 3d effective theory. In a gauge theory with no scalar particles

all the parameters of the 3d theory are finite to order g4, whereas in this theory the mass of

the fundamental scalar contains divergences requiring renormalization. We also have terms

of order g5 ln g, which cancel in QCD. In addition, the different mass scales mD, m′
D and

m3 lead to terms of type g5 ln m1/m2, where mi are some combinations of these masses.

The paper is organized as follows: in section 2 we explicitly define the theory we are

working with and fix various conventions. In section 3 we briefly review the method of

dimensional reduction. Sections 4, 5 and 6 contain the calculations. Finally, in section 7

we discuss the result, the details of which are given in appendices A–D.

2. The basic setting

The theory we consider is the SU(3)c×SU(2)L×U(1)Y standard model with nF = 3 families

of fermions and nS = 1 fundamental scalar doublets, and the quantity we will evaluate is

the pressure of this theory at high temperatures. The theory is specified by the euclidean

action (in the units ~ = c = 1)

S =

∫ β

0
dτ

∫
ddxL (2.1)

L =
1

4
Ga

µνGa
µν +

1

4
FµνFµν +

1

4
W a

µνW a
µν + DµΦ†DµΦ − ν2Φ†Φ + λ(Φ†Φ)2 (2.2)
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+l̄LD/ lL + ēRD/ eR + q̄LD/ qL + ūRD/ uR + d̄RD/ dR + igY

(
q̄Lτ2Φ∗tR − t̄R(Φ∗)†τ2qL

)
,

where

Ga
µν = ∂µAa

ν − ∂νAa
µ + gεabcAb

µAc
ν , Fµν = ∂µBν − ∂νBµ,

W a
µν = ∂µCa

ν − ∂νCa
µ + gsf

abcCb
µCc

ν

DµΦ = ∂µΦ − ig

2
Aa

µτaΦ +
ig′

2
BµΦ, DµΦ† = (DµΦ)†,

D/ lL = γµ

(
∂µlL − ig

2
Aa

µτalL +
ig′

2
BµlL

)
,

D/ eR = γµ

(
∂µeR + ig′BµeR

)

D/ qL = γµ

(
∂µqL − ig

2
Aa

µτaqL − ig′

6
BµqL − igsC

a
µT aqL

)
,

D/ uR = γµ

(
∂µuR − 2ig′

3
BµuR − igsC

a
µT auR

)

D/ dR = γµ

(
∂µdR +

ig′

3
BµdR − igsC

a
µT adR

)
. (2.3)

Here Aa
µ, Bµ and Ca

µ are gauge bosons of weak-, hyper- and strong interactions, respec-

tively; Φ is the fundamental scalar doublet; lL and eR are the left-handed lepton doublets

and the right-handed lepton singlets (wrt. weak charge), and qL, uR and dR are the left-

handed quark doublets and the right-handed up and down -type quark singlets. Only

the Yukawa coupling for the top quark is taken into account. Summation over different

families is assumed. Also, d = 3 − 2ε in dimensional regularization, µ, ν = 0, . . . , d. The

gamma matrices are defined in euclidean space so that {γµ, γν} = 2δµν , {γ5, γµ} = 0 and

Tr γ5γµγνγργσ ∝ εµνρσ . The color indices are a = 1, . . . , dA for the weak interaction and

a = 1, . . . , N2
c − 1 for the strong interaction. The different group theory factors for SU(N)

with generators T a are defined as:

TFδab = Tr T aT b, CFδij = [T aT a]ij , (2.4)

CAδab = facef bce, dA = δaa, dF = δii. (2.5)

For SU(2) with T a = τa/2 they are TF = 1/2, CF = 3/4, CA = 2, dA = 3 and dF = 2.

The momentum integrations are done using dimensional regularization for both IR

and UV divergences. The dimensionful parameter is chosen according to the MS scheme,

which amounts to replacing the scale parameter µ by

Λ = µ

(
eγ

4π

)−1/2

. (2.6)

All couplings are implicitly scaled to their 4d (ε = 0) dimension with µ, so that e.g. g2 =

µ−2εĝ2, where ĝ is the coupling in the 4 − 2ε-dimensional lagrangian, [ĝ] = ε. We use the

Feynman gauge (ξ = 1) for the gauge particle propagators at all stages of the calcula-

tion. The final result should, of course, be gauge independent, since pressure is a physical

quantity, but we have not checked this explicitly.
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The theory contains six couplings that run with the renormalization scale: gauge

couplings g′, g and gs, the fundamental scalar quartic self-coupling λ and its mass parameter

ν2, and gY . The counterterms in the standard model can be found in [19]. However, the

terms proportional to λ were neglected there, while the terms including g′2 were dropped

in [22], so for completeness we list the running of the needed parameters here:

ν2(Λ) = ν2(µ) +
1

8π2

(
−3CFg2 − 3

1

4
g′2 + Ncg

2
Y + 2(dF + 1)λ

)
ν2 ln

Λ

µ
, (2.7)

λ(Λ) = λ(µ) +
1

8π2

(
3

dF + 1

(
C2

F + CFTF − 1

4
CACF

)
g4 +

3

16
g′4 +

3

2

CF

dF + 1
g2g′2

−6CFλg2 − 3

2
λg′2 + (8 + 2dF)λ2 − 3g4

Y + 2Ncλg2
Y

)
ln

Λ

µ
, (2.8)

g2
Y (Λ) = g2

Y (µ) +
1

8π2

[(
3

2
+ Nc

)
g2
Y − 3

Nc

(
N2

c − 1
)
g2
s − 9

4
g2 − 17

12
g′2

]
g2
Y ln

Λ

µ
, (2.9)

g2(Λ) = g2(µ) +
1

8π2

(
−11

3
CA +

4

3
(Nc + 1)

nF

2
TF +

1

3
TFnS

)
g4 ln

Λ

µ
, (2.10)

g′2(Λ) = g′2(µ) +
1

8π2

{[
2

3

(
1 +

5

9
Nc

)
+

dF

6

(
1 +

Nc

9

)]
nF +

1

3

dF

4
nS

}
g′4 ln

Λ

µ
, (2.11)

g2
s(Λ) = g2

s(µ) +
1

8π2

(
−11

3
Nc +

4

3
nF

)
g4
s(µ) ln

Λ

µ
. (2.12)

Note that λ as we have defined it differs from [19] by a factor 6. Numerically, we fix

the values of these couplings at the scale µ = mZ according to their tree-level relation to

different physical parameters:

ν2(mZ) =
1

2
m2

H , λ(mZ) =
1√
2
Gµm2

H , (2.13)

g2
Y (mZ) = 2

√
2Gµm2

t , g2(mZ) = 4
√

2Gµm2
W , (2.14)

g′2(mZ) = 4
√

2Gµ

(
m2

Z − m2
W

)
, αs(mZ) = 0.1187, (2.15)

where mH is the unknown mass of the Higgs boson, mW = 80.43 GeV, mZ = 91.19 GeV and

mt = 174.3 GeV are the masses of the W and Z bosons and the top quark, respectively,

and Gµ = 1.664 · 10−5 GeV−2 is the Fermi coupling constant. We always assume that

nS = 1 and nF = 3 unless stated otherwise, but use the general form to keep track of

different contributions. Note, in particular, that the result will not be valid for nS > 1,

since the mixing of scalars is not taken into account. We employ a power counting rule

λ ∼ g′2 ∼ g2
s ∼ g2

Y ∼ g2 and assume the temperature to always be so high that the

relation ν2 . g2T 2 applies.

The physical observable we are studying is the pressure, defined by

p(T ) = lim
V →∞

T

V
ln

∫
DADψDψ̄DΦ exp (−S) . (2.16)

It is normalized such that the (real part of the) pressure of the symmetric phase vanishes at

T = 0.1 The purpose is to calculate the pressure up to, and including, order g5(1+ln g)T 4,

1Since the symmetric phase is unstable at T = 0, the pressure there develops an imaginary part when
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employing the power counting rules above. This amounts to calculating 1-, 2- and 3-

loop vacuum diagrams contributing to the pressure. These, together with their symmetry

factors, are listed in appendix D. Other interesting variables, such as entropy and energy

densities s(T ) and ε(T ), can then be evaluated using standard thermodynamic relations,

s(T ) = ∂p/∂T , ε(T ) = Ts(T ) − p(T ).

3. Separation of scales

In this section we will shortly review the rationale of dimensional reduction applied to our

case. A more complete treatment can be found, e.g., in [22].

A straightforward approach in analytic calculations is to use perturbation theory in

evaluating the quantities one is interested in. Since we are working in a temperature range

where the gauge couplings, due to asymptotic freedom, are small, one could naively hope

this to be a consistent procedure. However, in practice the straightforward expansion in

g2 is inhibited by various infrared singularities requiring resummations. This in turn leads

to the introduction of many different mass scales. At high temperature and small coupling

the dominant energy scale is the temperature T , while the electric and magnetic scales gT

and g2T are suppressed by powers of g. The perturbative result includes logarithms of all

these, making it impossible to choose the UV cutoff in such a way that there would not be

any large logarithms left. This seems to render perturbation theory unusable.

The solution, as is well known [3], is to separate the contributions of different scales

into successive effective theories, where all the large scales are integrated out one by one.

First, we integrate

p(T ) ≡ pE(T ) +
T

V
ln

∫
DAkDA0DΦ exp (−SE) , (3.1)

where SE contains only the static Matsubara modes of the gauge bosons and of the fun-

damental scalar (Higgs) field. The contributions of the nonzero Matsubara modes and

fermions to the pressure show up as the matching constant pE (section 4) and in the pa-

rameters of SE (section 5). The spatial (magnetic) gauge field components remain massless,

while the temporal component gets a thermal mass mD ∼ gT . The theory defined by SE

can then be viewed as a 3d gauge theory with adjoint and a fundamental scalar fields.

The effective theory thus obtained still contains contributions from two scales, gT and

g2T , so one more reduction step is useful. We integrate out the scale gT and are left with

p(T ) ≡ pE(T ) + pM(T ) +
T

V
ln

∫
DAkDΦ exp (−SM) . (3.2)

The precise form of the remaining effective theory SM depends on the conditions of the

system. If the temperature is much higher than the critical temperature of the system2,

then both the adjoint and the fundamental scalars can be integrated out since both of

loop corrections are calculated. The imaginary part can be related to the decay rate of the unstable

phase [34].
2Within perturbation theory there is always a first order phase transition in electroweak theory.
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them are massive, m ∼ gT , and thus the remaining effective theory contains only the

spatial gauge fields. The only mass scale of the theory is then provided by the 3d gauge

coupling and is of the order g2T . Consequently, the contribution of this theory to the

pressure is of the order g6. However, close to the phase transition the fundamental scalar,

which drives the transition, becomes light and we are not allowed to integrate it out at the

same time as the adjoint scalars. Then the remaining effective theory contains both the

spatial gauge fields and the fundamental scalar field, which now has a mass of the order

g3/2T . To leading order the contribution from this theory to the pressure is then of the

order g9/2T 4 = g4√g T 4.

In the present paper we will just consider the case when the temperature is much

higher than the critical temperature, and postpone the study of the case when the system

is near the phase transition to a later work. The final result of our calculation can then be

written as

p(T ) = pE(T ) + pM(T ) + pQCD(T ) + O(g6T 4), (3.3)

where pQCD can be taken from [4, 8, 10, 9]. One-loop quark diagrams are included in pE,

so they must be subtracted from pQCD.

4. Calculation of the pressure pE

The contribution of the nonzero Matsubara modes and fermions to the pressure given

by the matching constant pE is determined by calculating the path integral in eq. (2.16)

without any resummations (appendix D.1). The calculation involves two different mass

scales, the temperature (2πT ) and the mass of the Higgs field (ν2). Since we assume the

temperature to always be so high that ν2 . g2T 2, we can expand the scalar propagator in

powers of ν2 and keep only terms up to the desired order (integration over the scale 2πT

is infrared safe and thus pE must be analytic in ν2). The general form of pE(T ) can then

be written as

pE(T ) = T 4
[
αE1 + g2αEA + g′2αEB + λαEλ + g2

Y αEY

+
1

(4π)2

(
g4αEAA + g′4αEBB + (gg′)2αEAB + λ2αEλλ + λg2αEAλ + λg′2αEBλ

+ g4
Y αEY Y + (ggY )2αEAY + (g′gY )2αEBY + λg2

Y αEY λ

+ (ggs)
2αEAs + (g′gs)

2αEBs + (gY gs)
2αEY s

)]

+ ν2T 2
[
αEν +

1

(4π)2
(
g2αEAν + g′2αEBν + λαEλν + g2

Y αEY ν

)]

+
ν4

(4π)2
αEνν + T 4 · O(g6). (4.1)

The values of all the coefficients αE can be found in appendix A. The contribution coming

solely from QCD is not included.

All the couplings in the expression above are the renormalized couplings and thus

run according to eqs. (2.7)–(2.12). However, not all the 1/ε poles are cancelled by the

renormalization procedure as can be explicitly seen in the coefficents αE. The remaining

– 7 –
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poles correspond to the IR divergences and are only cancelled when the contribution from

the effective theories to the pressure is taken into account.

5. Parameters of the 3d theory SE

The 3d effective electroweak theory has the general form

SE =

∫
d3x

{
1

4
Ga

ijG
a
ij +

1

4
FijFij + (DiΦ)†(DiΦ) + m2

3Φ
†Φ + λ3(Φ

†Φ)2

+
1

2
(DiA

a
0)

2 +
1

2
m2

DAa
0A

a
0 +

1

4
λA(Aa

0A
a
0)

2 +
1

2
(∂iB0)

2 +
1

2
m′2

DB0B0

+h3Φ
†ΦAa

0A
a
0 + h′

3Φ
†ΦB0B0 −

1

2
g3g

′
3B0Φ

†Aa
0τ

aΦ

}
, (5.1)

where Ga
ij = ∂iA

a
j − ∂jA

a
i + g3ε

abcAb
iA

c
j , Fij = ∂iBj − ∂jBi, DiΦ = (∂i − ig3τ

aAa
i /2 +

ig′3Bi/2)Φ and DiA
a
0 = ∂iA

a
0 + g3ε

abcAb
iA

c
0. All the couplings and masses in (5.1) can be

determined to the required order in g2 by matching the static Green’s functions computed

in both the effective and the original theory.

5.1 Coupling constants

The 2-loop diagrams in the 3d theory are of the order g2
3m

2 ∼ O(g4). Therefore, the

leading order results for couplings are enough for our purposes, while the corrections would

contribute at g6. At tree-level the reduction to the 3d theory only includes scaling the fields

by
√

T , and therefore matching the Green’s functions gives

g2
3 = g2T, g′23 = g′2T,

λ3 = λT, λA = O(g4),

h3 = 1
4g2T, h′

3 = 1
4g′2T.

(5.2)

The quartic couplings of the adjoint scalars, λA,B, are not needed at this order. Expres-

sions for them can be found in [22]. Note that the relations above hold for (dimensionful)

parameters in the d-dimensional lagrangian. The dimensional regularization scale does not

need to be the same in 4d and 3d, which gives O(ε) corrections to the above matching

formulas, e.g. g2
3 = (Λ/µ3)

2εg2T , where Λ and µ3 are the 4d and 3d dimensional regulariza-

tion scales, respectively. At the end of the calculation we are going to set Λ = µ3. When

properly renormalized, the 4d theory has only IR divergencies left and the scale Λ should

be interpreted as the factorization scale separating the full and the effective theory.

5.2 Mass parameters

In general, the mass parameters of the effective theory can be found by comparing the

poles of static propagators in both theories. In the full theory we have for the pole of the

propagator

k2 + m2 + Π(k2) = k2 + m2 + Π(k2) + Π3(k
2) = 0, (5.3)

– 8 –
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at k2 = k2 = −m2
eff , k0 = 0. Here Π3(k

2) is the contribution of n = 0 modes only, and this

part is also correctly produced by the effective theory, where the same propagator reads

k2 + m2
3 + Π3(k

2) = 0 at k2 = −m2
eff . (5.4)

For m . gT the leading order solution is k ∼ gT . Since Π(k2) has no infrared

divergence, we can expand it in k2,

Π(k2) = Π(0) + k2 d

dk2
Π(0) + . . . (5.5)

Up to O(g4) eq. (5.3) then reads

k2

(
1 +

d

dk2
Π

(1)
(0)

)
+ m2 + Π

(1)
(0) + Π

(2)
(0) + Π3(k

2) = 0, (5.6)

and the matching condition can be read from

m2
3 + Π3(k

2) =

(
1 − d

dk2
Π

(1)
(0)

) [
m2 + Π

(1)
(0) + Π

(2)
(0) + Π3(k

2)
]
, (5.7)

giving

m2
3 = m2 + Π

(1)
(0) + Π

(2)
(0) −

(
m2 + Π

(1)
(0)

) d

dk2
Π

(1)
(0). (5.8)

Note that Π3 ∼ g2mT ∼ g3T 2 cancels between the two equations, since we only need terms

up to g4. There are 1/ε-divergencies at m2
3g

2
3 order in the free energy computed in this

theory, so we will also need the g2ε-terms in the masses.

5.2.1 Adjoint scalar masses

Applying the procedure described above to the static A0 and B0 propagators gives, after

calculating all the 2-loop corrections to them,

m2
D = T 2

[
g2

(
βE1 + βE2ε + O(ε2)

)
+

g4

(4π)2
(βE3 + O(ε)) + O(g6)

+
g2

(4π)2

(
βEλλ + βEsg

2
s + βEY g2

Y + βE′g′2 + βEν
−ν2

T 2

)]
, (5.9)

m′2
D = T 2

[
g′2

(
β′

E1 + β′
E2ε + O(ε2)

)
+

g′4

(4π)2
(
β′

E3 + O(ε)
)

+ O(g′6)

+
g′2

(4π)2

(
β′

Eλλ + β′
Esg

2
s + β′

EY g2
Y + β′

Eg2 + β′
Eν

−ν2

T 2

)]
. (5.10)

The coefficients β are listed in appendix B.

In the above equation g and g′ are the renormalized couplings, which run as in

eqs. (2.10) and (2.11). Substituting these into eqs. (5.9) and (5.10), we note that at O(ε0)

all the dependence on the dimensional regularization scale Λ is cancelled by the running

of g’s.
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There are also some electroweak corrections to the adjoint scalar mass of QCD. In

addition to pure QCD terms already given in [4] we have

m2
3E = m2

3E

∣∣
QCD

− g2
sT

2T
(qcd)
F

(
2CFdF

nF

2
g2 + 2

11

36
nFg′2 + dFg2

Y

)
, (5.11)

and these corrections need to be taken into account in the one-loop term 2m3
3E/3π of the

QCD pressure.

Note that the adjoint scalar masses are finite, unlike the fundamental scalar mass

below. This is a direct consequence of the fact that the adjoint scalars are actually gauge

field components, which have no mass renormalizations, and there are no IR divergences

in the matching computation. Electroweak theory also includes a fundamental scalar field,

whose mass contains 1/ε poles at two-loop level renormalization, since it is not protected

by the gauge symmetry.

5.2.2 Fundamental scalar mass

In [22] the 3d mass of the fundamental scalar was calculated using effective potential

methods, but only O(ε0) terms were given, and g′2 terms were dropped at two-loop level.

We calculated this mass using the same methods as for the adjoint scalar masses, and

included also the O(g2ε) corrections.

Unlike in the previous section, here we get UV divergencies proportional to T 2 that

are not cancelled by the counterterms of the 4d theory. These are related to the mass

renormalization in the 3d theory, since the matching procedure gives the bare mass m2
3B .

It serves as an additional check to calculate the 2-loop counterterm dircetly in the 3d theory

to see that it precisely cancels the 1/ε-terms found here.

For the divergent part we have, substituting directly the correct numerical values for

group theory factors and setting nS = 1,

δm2
3 =

T 2

(4π)2ε

(
−81

64
g4 +

7

64
g′4 +

15

32
g2g′2 − 9

4
λg2 − 3

4
λg′2 + 3λ2

)
, (5.12)

while the counterterm in the 3d theory reads

1

(4π)2ε

(
−39

64
g4
3 +

5

64
g′23 +

15

32
g2
3g

′2
3 − 9

4
λ3g

2
3 − 3

4
λ3g

′2
3 + 3λ2

3 +
3

2
h2

3 − 3h3g
2
3 + 2h′2

3

)
.

(5.13)

The divergent part is independent of the gauge parameter ξ in covariant gauges. This was

expected, since the gauge choice in the 3d theory should not depend on that of the 4d

theory.

The finite part gives the renormalized 3d mass,

m2
3(Λ) = −ν2

[
1 +

g2

(4π)2
βνA +

g′2

(4π)2
βνB +

λ

(4π)2
βνλ +

g2
Y

(4π)2
βνY

]

+ T 2
[
g2(βA1 + βA2ε) + g′2(βB1 + βB2ε) + λ(βλ1 + βλ2ε) + g2

Y (βY 1 + βY 2ε)

+
g4

(4π)2
βAA +

g′4

(4π)2
βBB +

g2g′2

(4π)2
βAB +

λg2

(4π)2
βAλ +

λg′2

(4π)2
βBλ +

λ2

(4π)2
βλλ
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+
g2g2

Y

(4π)2
βAY +

g′2g2
Y

(4π)2
βBY +

g2
sg

2
Y

(4π)2
βsY +

λg2
Y

(4π)2
βλY +

g4
Y

(4π)2
βY Y

]
. (5.14)

All the different coefficients βxy are given in appendix B.

6. Calculation of the pressure pM

Computing all the 3-loop vacuum diagrams given by the action (5.1) (appendix D.2) and

treating m3 as being of order gT produces

pM(T )

T
=

1

4π
dFnS

(
m2

3 + δm2
3

)3/2
[
2

3
+ ε

(
16

9
+

4

3
ln

µ3

2m3

)]
+

1

4π

(
1

3
dAm3

D +
1

3
m′3

D

)

+
1

(4π)2
[
−dF(dF + 1)nSλ3m

2
3 − dFdAnSh3m3mD − dFnSh

′
3m3m

′
D

+

(
CFg2

3 +
1

4
g′23

)
nSdFm2

3

(
− 1

2ε
− 3

2
− 2 ln

µ3

2m3

)

+ CAdAg2
3m

2
D

(
− 1

4ε
− 3

4
− ln

µ3

2mD

)]

+
1

(4π)3

[
g4
3m3BAAf + g′43 m3BBBf + g2

3g
′2
3 m3BABf + g4

3mDBAAa + g2
3λ3m3BAλf

+ g′23 λ3m3BBλf + λ2
3m3Bλλf + h2

3m3Bhhf + h2
3mDBhha+ h′2

3 m3B
′
hhf + h′2

3 m′
DB′

hhb

+ g2
3g

′2
3 m32b(m3) + g2

3g
′2
3 mDb(mD) + g2

3g
′2
3 m′

Db(m′
D) +

dF

4m3
(dAh3mD + h′

3m
′
D)2

+ d2
Fm2

3

(
dAh2

3

2mD
+

h′2
3

2m′
D

)
+ g4

3CACFdF
1

3

(
m2

3

mD
ln

mD + m3

m3
+

m2
D

m3
ln

mD + m3

mD

)

+ dF(dF + 1)λ3(dAh3mD + h′
3m

′
D) + g2

3h3mDBAha+ g′23 h′
3m

′
DB′

Bhb+ g2
3h

′
3m

′
DB′

Ahb

+ g′23 h3mDBBha + g2
3h3m3BAhf

]
. (6.1)

Constants Bx and the function b(x) are given in appendix C. Due to divergences in(
m2

3 + δm2
3

)3/2
we have to expand this term in powers of the coupling constants. In higher

order terms it is enough to use the leading order result

m2
3 ≈ m2

T ≡ −ν2 + T 2

(
3

16
g2 +

1

16
g′2 +

1

2
λ +

1

4
g2
Y

)
(6.2)

for the thermal Higgs field mass.

All the 1/ε poles at O(g5) cancel, and substituting the running parameters of eqs. (2.7)–

(2.12) the g3 and g5 orders are seen to be independent of the dimensional regularization

scale. The poles at O(g4) cancel against those in pE coming from the heavy (πT ) modes.

7. Numerical results

In this section we plot the final result given by eq. (3.3), into which eqs. (4.1), (5.9), (5.10),

(5.12), (5.14) and (6.1) are inserted, for various values of parameters. In particular, we

set mH = 130 GeV, which is above the experimental lower limit [35]. Note that vacuum

stability considerations lead to a slightly higher limit [36], but it turns out that the precise

value of mH does not affect the result much.
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7.1 SU(2) + fundamental Higgs

Analyzing the result obtained is complicated due to large number of different fields and

couplings between them in the complete standard model. The total effective number of

degrees of freedom of the theory is 106.75, but the contribution from the Higgs field that

drives the transition to this number is just 4 (a complex scalar doublet). Its contribution

to the pressure can therefore be expected to be small. Also, because the strong coupling

constant gs and the Yukawa coupling of the top quark gY are numerically large when

compared to the other gauge couplings and to the Higgs self coupling, their contribution to

the pressure dominates over the contribution coming from the Higgs sector that is relevant

for the phase transition in the system. It is therefore instructive to consider a simpler

SU(2) + Higgs model for which the total number of degrees of freedom is lower and which

does not include couplings that are not directly related to the phase transition. We achieve

this simply by putting g′2 = g2
s = g2

Y = 0 and nF = 0 in the general result. This theory

has also been studied on lattice [37].

To lowest order the pressure of this theory is the ideal gas pressure of SU(2) gauge

bosons and a massless scalar, given by

p0(T ) =
π2

90
T 4 (2dA + 2dF) =

π2

9
T 4. (7.1)

Normalizing the results to p0, we plot the pressure of this theory to different orders of the

couplings in figure 1. The mass of the Higgs boson is taken to be mH = 130 GeV and the

mass of the W boson mW = 80 GeV. As can be seen, at high temperatures the introduction

of interactions reduces the pressure, but since the coupling is small, this effect is small as

well. The perturbative expansion is well behaved in the sense that the absolute value of

each new correction is smaller than that of the previous one. This is in contrast to QCD,

where the expansion fluctuates around the ideal gas pressure unless the temperature is

taken to be asymptotically large.

The result differs from that of QCD also in the sense that there is another manifest

mass scale in the system, the mass of the Higgs boson. The terms ν2T 2 and ν4 in the

expansion of the pressure become more significant and the pressure deviates from the

standard Stefan-Boltzmann law p ∼ T 4 as the temperature gets smaller. Schematically, the

pressure of a gas of massive particles is given to leading order by p ∼ T 4(1−g2)−∑
i m

2
i T

2,

where i labels all the particle types in the system and the masses are the thermal masses,

m2 ∼ g2T 2 for the temporal component of the gauge bosons and m2 ∼ −ν2 + g2T 2 for the

Higgs scalar. Thus, as the temperature is lowered, the pressure, normalized to the ideal

gas pressure of massless particles, behaves as p/p0 ∼ 1− g2 +ν2/T 2. This is seen explicitly

in figure 1.

Although the calculation presented in this paper is not, in principle, valid near the

phase transition, we have plotted in figure 1 also the pressure of the broken phase to orders

g2 and g3, corresponding to a two-loop calculation. This gives us qualitative understanding

about the behavior of the pressure near the phase transition.
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Figure 1: The pressure of SU(2) + fundamental Higgs theory. The Higgs mass is mH = 130GeV

and the W mass is mW = 80GeV. The critical temperature is Tc = 220GeV (g3).

The pressure of the broken phase plotted in figure 1 is given by (ϕ/
√

2 being the

expectation value of the Higgs field) [19]

pBP(T,ϕ) =
1

2
ν2ϕ2 − 1

4
λϕ4 +

π2

9
T 4 − 13

192
g2T 4 − 1

24
λT 4

−T 2

24

(
mH(ϕ)2 + 3mGB(ϕ)2 + 9mW (ϕ)2

)

+
T

12π

[(
mH(ϕ)2 +

3

16
g2T 2 +

1

2
λT 2

)3/2

+ 3

(
mGB(ϕ)2+

3

16
g2T 2+

1

2
λT 2

)3/2

+6mW (ϕ)3 + 3

(
mW (ϕ)2 +

5

6
g2T 2

)3/2
]

+ O(g4), (7.2)

where mH(ϕ)2 = 3λϕ2 − ν2, mGB(ϕ)2 = λϕ2 − ν2 and mW (ϕ)2 = 1/4g2ϕ2 are the zero

temperature masses of the particles, and ϕ = ϕ(T ) is such that ∂pBP/∂ϕ2 = 0. We can

now directly observe that there is a temperature where the pressures of the symmetric

phase and of the broken symmetry phase are equal. Below that the pressure of the broken

symmetry phase is bigger and thus the symmetry of the theory gets spontanously broken.

Another interesting question is how the scale dependence of the expansion behaves

as higher order corrections are added. If the perturbative expansion is well behaved, one

expects the scale dependence to reduce as more terms are included. This is plotted in

figure 2. The temperature is fixed to T = 500 GeV. As can be seen, the result depends very
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Figure 2: The scale dependence of the pressure of SU(2) + fundamental Higgs theory. The

temperature is fixed to T = 500GeV, the Higgs mass is mH = 130GeV and the W mass is

mW = 80GeV.

weakly on the chosen renormalization scale: varying the scale within Λ/T ∼ 10−2 . . . 104

changes the result just about two percent. More specifically, it is seen that the result up

to order g3 is fairly scale independent. This, however, is a numerical coincidence which

stems from the particular values of the parameters g2, λ and ν and does not appear to

have any fundamental reason. The weak scale dependence reappearing in terms of order

g4 and g5 seems to support this conclusion. A similar phenomenon was observed in pure

gauge theory in [8], where the scale dependence of the pressure up to order g3 was seen to

be much weaker than expected.

7.2 The standard model

Here we plot the pressure of the full theory for realistic values of couplings, using tree-level

relations between the measured values of mW , mZ , GF , mt, αs and the parameters in our

result, as shown in eqs. (2.13)–(2.15). The unknown Higgs particle mass is set to the lowest

experimentally accepted value mH = 130 GeV.

For an ideal gas of massless SM particles we would have the familiar Stefan-Boltzmann

result

p0 =
π2

90
T 4

(
2 + 2dA + 2(N2

c − 1) + 2dF + 2
7

8
nF(dF + 1 + Nc(dF + 2))

)
= 106.75

π2

90
T 4,

(7.3)

which actually is αE1 + gluons. This T 4 behavior dominates the pressure, so we again

divide by p0 in the plots to see the deviations from massless ideal gas.
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Figure 3: Pressure in different orders of perturbation theory.

The pressure of the full SU(3)×SU(2)×U(1) standard model with 3 families of fermions

is plotted in figure 3. We show the behavior of the result with increasing orders of pertur-

bation theory to find out the relative size of corrections. Unlike the SU(2) + Higgs case,

the result varies strongly with every new order included. This is the known behavior of

QCD, and follows from the large values of gs and gY , while the higher order terms in g, g′

and λ are small. The O(g5) correction is still large enough to push the line downwards near

the phase transition. The relative deviation from the ideal gas pressure is of the same order

of magnitude as in QCD, which can be explained by the large number of QCD degrees of

freedom (79 of the total 106.75). As seen above, in the SU(2) + Higgs theory the deviation

is significantly smaller. We have not plotted the pressure all the way down to Tc, where

the behavior is very singular and the line shoots up to infinity. This stems from the IR

divergences in terms like m2
D/m3, since our assumption m3(T ) ∼ gT breaks down near Tc

and m3 becomes small.

The effect of varying mH is shown in figure 4, where the relative difference between

pressure at mH = 130 GeV and mH = 200 GeV is plotted. The Higgs particle mass affects

the behavior of the pressure only very weakly, the only change being a slight and almost

constant (times T 4) increase in the pressure with increasing mH . This was expected since

the fundamental scalar only represents 4 of the ∼ 100 degrees of freedom.

8. Conclusions

In this paper we have calculated the pressure, or the free energy, of the standard model at

high temperatures to three loops, or to order g5. The result is about 10% smaller than the
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Figure 4: Relative difference between pressure at mH = 130GeV and mH = 200GeV.

ideal gas pressure. The effective number of degrees of freedom is thus accordingly reduced

from the standard value of 106.75 used in cosmological computations. The higher order

corrections to the pressure are numerically dominated by contributions coming from the

strong coupling constant and the Yukawa coupling of the top quark. Neglecting them shows

that the perturbative behavior of the underlying gauge + Higgs theory is good, with the

absolute value of each new order in the expansion of the pressure being smaller than that of

the previous one. This conclusion is supported by the expansion’s small dependence on the

renormalization scale. The large numerical values of gs and gY imply that the expansion

of the pressure of the complete standard model is not as well behaved. However, even then

the convergence of the expansion is better than that of the pressure of pure QCD.

It is possible to extend the expansion presented in this paper by one more order in

powers of the coupling constants by using perturbative calculations, to the order g6 ln g.

To evaluate that term would require a 4-loop calculation of the vacuum energy densities of

the three-dimensional effective field theory in eq. (5.1). However, it is impossible to give

an unambiguous meaning for this term until the complete g6 term is evaluated as well, a

task that already requires the use of nonperturbative methods. The convergence of the

perturbative expansion is rather fast so one can expect this term to be numerically small.

The calculation performed is valid when the temperature of the system is much higher

than the critical temperature of the system. However, unlike in QCD, where the coupling

constant becomes large close to the phase transition and renders the perturbative methods

unreliable, in electroweak theory it is possible to extend these calculations also to the

temperature region close to the phase transition. This requires a modified effective 3d

theory in which the adjoint scalars A0 and B0 are integrated out but the fundamental scalar
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Φ is kept, assuming m3 is small compared to mD and m′
D. This is left to a forthcoming

work [38].
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A. Expansion coefficients for pE

αE1 =
π2

45

{
1 + dA + dFnS +

7

8

[
1 + dF + (2 + dF)Nc

]
nF

}
(A.1)

αEA = − 1

144

[
CAdA +

5

2
CFdFnS +

5

4
CFdF(1 + Nc)nF

]
(A.2)

αEB = − 5

576

{
1

2
dFnS +

[
1 +

1

4
dF +

(
5

9
+

1

36
dF

)
Nc

]
nF

}
(A.3)

αEλ = −dF(dF + 1)

144
nS (A.4)

αEY = − 5

288
Nc (A.5)

αEAA =
1

12

{
C2

AdA

(
1

ε
+

97

18
ln

Λ

4πT
+

29

15
+

1

3
γ +

55

9

ζ′(−1)

ζ(−1)
− 19

18

ζ′(−3)

ζ(−3)

)

+

[
CACFdF

(
1

2ε
+

169

72
ln

Λ

4πT
+

1121

1440
− 157

120
ln 2 +

1

3
γ +

73

36

ζ′(−1)

ζ(−1)
− 1

72

ζ′(−3)

ζ(−3)

)

+C2

FdF

(
35

32
− ln 2

)]
(1 + Nc)nF

+CFTFdF

(
5

36
ln

Λ

4πT
+

1

144
− 11

3
ln 2 +

1

12
γ +

1

9

ζ′(−1)

ζ(−1)
− 1

18

ζ′(−3)

ζ(−3)

)
(1 + Nc)

2
n2

F

+CFTFdF

(
25

72

Λ

4πT
− 83

16
− 49

12
ln 2 +

1

3
γ +

1

36

ζ′(−1)

ζ(−1)
− 1

72

ζ′(−3)

ζ(−3)

)
(1 + Nc)nFnS

+

[
CACFdF

(
1

ε
+

317

72
ln

Λ

4πT
+

337

720
+

2

3
γ +

125

36

ζ′(−1)

ζ(−1)
+

19

72

ζ′(−3)

ζ(−3)

)

+C2

FdF

(
3

2ε
+

19

2
ln

Λ

4πT
+

881

120
+

3

4
γ +

23

2

ζ′(−1)

ζ(−1)
− 11

4

ζ′(−3)

ζ(−3)

)

+CFTFdF

(
23

36
ln

Λ

4πT
− 283

360
+

1

3
γ +

11

18

ζ′(−1)

ζ(−1)
− 11

36

ζ′(−3)

ζ(−3)

)]
nS

}
(A.6)

αEBB =
1

128

{[
dF

(
1

ε
+

19

3
ln

Λ

4πT
+

881

180
+

1

2
γ +

23

3

ζ′(−1)

ζ(−1)
− 11

6

ζ′(−3)

ζ(−3)

)

+d2

F

(
23

54
ln

Λ

4πT
− 283

540
+

2

9
γ +

11

27

ζ′(−1)

ζ(−1)
− 11

54

ζ′(−3)

ζ(−3)

)]
nS

+dF

[
1 +

5

9
Nc +

dF

4

(
1 +

Nc

9

)]

×
[
25

27
ln

Λ

4πT
− 83

60
− 147

135
ln 2 +

8

9
γ +

2

27

ζ′(−1)

ζ(−1)
− 1

27

ζ′(−3)

ζ(−3)

]
nFnS
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+

[
1 +

17

81
Nc +

dF

16

(
1 +

Nc

81

)] (
35

3
− 32

3
ln 2

)
nF

+

[(
1 +

5

9
Nc

)2

+
dF

2

(
1 +

2

3
Nc +

5

81
N2

c

)
+

d2
F

16

(
1 +

Nc

9

)2
]

×
(

40

27
ln

Λ

4πT
+

2

27
− 176

45
ln 2 +

8

9
γ +

32

27

ζ′(−1)

ζ(−1)
− 16

27

ζ′(−3)

ζ(−3)

)
n2

F

}
(A.7)

αEAB =
1

16

[
CFdF

(
1

ε
+

19

3
ln

Λ

4πT
+

881

180
+

1

2
γ +

23

3

ζ′(−1)

ζ(−1)
− 11

6

ζ′(−3)

ζ(−3)

)
nS

+CFdF

(
1 +

1

9
Nc

) (
35

48
− 2

3
ln 2

)
nF

]
(A.8)

αEλλ =
dF(dF + 1)

9
nS

[
ln

Λ

4πT
+

31

40
+

1

4
γ +

3

2

ζ′(−1)

ζ(−1)
− 3

4

ζ′(−3)

ζ(−3)
+

1

4
dF

(
ln

Λ

4πT
+ γ

)]
(A.9)

αEAλ =
dF(dF + 1)

36
CF

(
3

ε
+ 15 ln

Λ

4πT
+ 11 + 3γ + 12

ζ′(−1)

ζ(−1)

)
nS (A.10)

αEBλ =
dF(dF + 1)

144
nS

(
3

ε
+ 15 ln

Λ

4πT
+ 11 + 3γ + 12

ζ′(−1)

ζ(−1)

)
(A.11)

αEY Y = − 1

32
Nc

[
ln

Λ

4πT
− 239

120
− 11

5
ln 2 + 2

ζ′(−1)

ζ(−1)
− ζ′(−3)

ζ(−3)

−Nc

(
10

9
ln

Λ

4πT
+

53

90
− 106

45
ln 2 +

4

9
γ +

4

3

ζ′(−1)

ζ(−1)
− 2

3

ζ′(−3)

ζ(−3)

)]
(A.12)

αEAY =
1

16
Nc

(
1

ε
+

19

4
ln

Λ

4πT
+

619

120
− 13

4
ln 2 + γ +

7

2

ζ′(−1)

ζ(−1)
+

1

4

ζ′(−3)

ζ(−3)

)
(A.13)

αEBY =
1

48
Nc

(
1

ε
+

131

36
ln

Λ

4πT
+

6563

1080
− 41

20
ln 2 + γ +

23

18

ζ′(−1)

ζ(−1)
+

49

36

ζ′(−3)

ζ(−3)

)
(A.14)

αEY λ =
1

6
Nc

(
ln

Λ

4πT
− ln 2 + γ

)
(A.15)

αEAs =
CFdF

12

(
N2

c − 1
)
nF

(
35

32
− ln 2

)
(A.16)

αEBs =
1

12

(
N2

c − 1
)
nF

[
175

288
− 5

9
ln 2 +

dF

36

(
35

32
− ln 2

)]
(A.17)

αEY s = − 15

144

(
N2

c − 1
)(

ln
Λ

4πT
− 62

75
− 27

25
ln 2 + 2

ζ′(−1)

ζ(−1)
− ζ′(−3)

ζ(−3)

)
(A.18)

αEν =
dF

12
nS (A.19)

αEAν = −CFdF

2

(
1

ε
+ 3 ln

Λ

4πT
+

5

3
+ γ + 2

ζ′(−1)

ζ(−1)

)
nS (A.20)

αEBν = −dF

8

(
1

ε
+ 3 ln

Λ

4πT
+

5

3
+ γ + 2

ζ′(−1)

ζ(−1)

)
nS (A.21)

αEλν = −dF(dF + 1)

3
nS

(
ln

Λ

4πT
+ γ

)
(A.22)

αEY ν = −1

3
Nc

(
ln

Λ

4πT
− ln 2 + γ

)
(A.23)

αEνν = dFnS

(
ln

ν

4πT
− 3

4
+ γ

)
(A.24)
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The normalization p(T = 0) = 0 in the symmetric phase is taken into account in αEνν .

B. Matching coefficients

B.1 Coefficients for the adjoint scalar masses

βE1 =
1

3

[
CA +

nF

2
(Nc + 1)TF + nSTF

]
(B.1)

β′

E1 =
1

3

[(
11

36
Nc +

3

4

)
nF +

dF

4
nS

]
(B.2)

βE2 =
2

3

[
CA

(
ζ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
+ TF

nF

2
(Nc + 1)

(
1

2
− ln 2 +

ζ′(−1)

ζ(−1)
+ ln

Λ

4πT

)

+TFnS

(
1

2
+

ζ′(−1)

ζ(−1)
+ ln

Λ

4πT

)]
(B.3)

β′

E2 =
2

3

[(
11

36
Nc +

3

4

)
nF

(
1

2
− ln 2 +

ζ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
+

dF

4
nS

(
1

2
+

ζ′(−1)

ζ(−1)
+ ln

Λ

4πT

)]
(B.4)

βE3 = C2

A

(
5

9
+

22

9
γ +

22

9
ln

Λ

4πT

)
+ CATF

nF

2
(Nc + 1)

(
1 − 16

9
ln 2 +

14

9
γ +

14

9
ln

Λ

4πT

)

+ CATFnS

(
1

3
+

20

9
γ +

20

9
ln

Λ

4πT

)
+ T 2

F

(nF

2
(Nc + 1)

)2
(

4

9
− 16

9
ln 2 − 8

9
γ − 8

9
ln

Λ

4πT

)

+ T 2

F

nF

2
(Nc + 1)nS

(
2

9
− 16

9
ln 2 − 10

9
γ − 10

9
ln

Λ

4πT

)
+ T 2

Fn2

S

(
−2

9
− 2

9
γ − 2

9
ln

Λ

4πT

)

− 2CFTF

nF

2
(Nc + 1) + CFTFnS (B.5)

β′

E3 =

(
11

36
Nc +

3

4

)2

n2

F

(
4

9
− 16

9
ln 2 − 8

9
γ − 8

9
ln

Λ

4πT

)
+

d2
F

16
n2

S

(
−2

9
− 2

9
γ − 2

9
ln

Λ

4πT

)

+

(
11

36
Nc +

3

4

)
dF

4
nFnS

(
2

9
− 16

9
ln 2 − 10

9
γ − 10

9
ln

Λ

4πT

)

− 2

(
137

1296
Nc +

9

16

)
nF +

dF

16
nS (B.6)

βEλ =
2

3
TF(dF + 1)nS β′

Eλ =
2

3

dF

4
(dF + 1)nS (B.7)

βEs = −2C3FTFNc
nF

2
β′

Es = −2C3F
11

36
NcnF (B.8)

βEY = −1

6
NcTF β′

EY = −11dF

72
Nc (B.9)

βE′ = −2TF

(
Nc

36
+

1

4

)
nF

2
+ TF

1

4
nS β′

E = −2CFdF

(
Nc

36
+

1

4

)
nF

2
+ CF

dF

4
nS

(B.10)

βEν = 4TFnS β′
Eν = 4

dF

4
nS (B.11)

Taking into account the different group theoretical factors, the pure gauge and fermionic

parts of these results agree with [4].
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B.2 Coefficients for the fundamental scalar mass

βνA = 3CF

(
2γ + 2 ln

Λ

4πT

)
βνB = 3

1

4

(
2γ + 2 ln

Λ

4πT

)
(B.12)

βνλ = −2(dF + 1)

(
2γ + 2 ln

Λ

4πT

)
βνY = −Nc

(
4 ln 2 + 2γ + 2 ln

Λ

4πT

)
(B.13)

βA1 =
1

4
CF βA2 = CF

1

2

(
2

3
+

ζ ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
(B.14)

βB1 =
1

4

(
1

2

)2

βB2 =

(
1

2

)2 1

2

(
2

3
+

ζ ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
(B.15)

βλ1 =
1

6
(dF + 1) βλ2 =

dF + 1

3

(
1 +

ζ ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
(B.16)

βY 1 =
1

12
Nc βY 2 =

Nc

6

(
1 − ln 2 +

ζ ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
(B.17)

βAA =

(
−11

9
− 5

2

ζ′(−1)

ζ(−1)
− 2

3
γ − 19

6
ln

Λ

4πT

)
CACF +

(
1 +

3

2

ζ′(−1)

ζ(−1)
+

3

2
γ + 3 ln

Λ

4πT

)
C2

F

+

(
1

9
+

2

3
ln 2 − 2

3
γ − 2

3
ln

Λ

4πT

)
nF

2
(Nc + 1)CFTF +

1

4

(
1 +

ζ′(−1)

ζ(−1)
+ ln

Λ

4πT

)
CF(dF + 1)

+

(
−2

9
− 1

2

ζ′(−1)

ζ(−1)
− 2

3
γ − 7

6
ln

Λ

4πT

)
CFTFnS (B.18)

βBB =

(
1 +

3

2

ζ′(−1)

ζ(−1)
+

3

2
γ + 3 ln

Λ

4πT

)
1

16
+

(
1

9
+

2

3
ln 2 − 2

3
γ − 2

3
ln

Λ

4πT

)
1

4
nF

(
11

36
Nc +

3

4

)

+

(
−2

9
− 1

2

ζ′(−1)

ζ(−1)
− 2

3
γ − 7

6
ln

Λ

4πT

)
dF

16
nS +

(
1

4
+

1

4

ζ′(−1)

ζ(−1)
+

1

4
ln

Λ

4πT

)
dF + 1

4
(B.19)

βAB =

(
2 + 3

ζ′(−1)

ζ(−1)
+ 3γ + 6 ln

Λ

4πT

)
CF

1

4
+

(
1

4
+

1

4

ζ′(−1)

ζ(−1)
+

1

4
ln

Λ

4πT

)
dF + 1

2
(B.20)

βAλ =

(
−5

3
− 2

ζ′(−1)

ζ(−1)
− 2 ln

Λ

4πT

)
CF(dF + 1) (B.21)

βBλ =

(
−5

3
− 2

ζ′(−1)

ζ(−1)
− 2 ln

Λ

4πT

)
1

4
(dF + 1) (B.22)

βλλ =

(
4 + 4

ζ′(−1)

ζ(−1)
+ 4 ln

Λ

4πT

)
(dF + 1) +

(
−2

3
− 2

3
γ − 2

3

ζ′(−1)

ζ(−1)
− 4

3
ln

Λ

4πT

)
(dF + 1)2 (B.23)

βAY =

(
− 1

12
− 1

6
ln 2 +

1

2
γ +

1

2
ln

Λ

4πT

)
CFNc (B.24)

βBY =

(
−11

36
− 55

54
ln 2 +

17

18
γ +

17

18
ln

Λ

4πT

)
1

4
Nc (B.25)

βsY =

(
−1

2
+

8

3
ln 2 + γ + ln

Λ

4πT

)
C3FNc (B.26)

βλY =

(
−1

3
ln 2 − 2

3
γ − 2

3
ln

Λ

4πT

)
(dF + 1)Nc (B.27)

βY Y =
3

4
γ +

3

4
ln

Λ

4πT
(B.28)
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C. Expansion coefficients for pM

BAAf = C2

FdFnS

(
− 3

4ε
− 35

4
− π2

3
+ 6 ln 2 − 9

2
ln

µ3

2m3

)
− CFTFdF

(
1

4ε
+

4

3
− 4

3
ln 2 +

3

2
ln

µ3

2m3

)

+ CACFdF

(
3

4ε
+

19

24
− 3 ln 2 + 5 ln

µ3

2m3

− 1

2
ln

µ3

2(m3 + mD)

)
(C.1)

BBBf =
dF

16
nS

(
− 3

4ε
− 35

4
− π2

3
+ 6 ln 2 − 9

2
ln

µ3

2m3

)
− d2

F

16
nS

(
1

4ε
+

4

3
− 4

3
ln 2 +

3

2
ln

µ3

2m3

)
(C.2)

BABf = CFdFnS

(
− 3

8ε
− 35

8
− π2

6
+ 3 ln 2 − 9

4
ln

µ3

2m3

)
(C.3)

BAAa = CACFdFnS

(
− 1

8ε
− 23

24
− 1

4
ln

µ3

2mD

− 1

2
ln

µ3

2(m3 + mD)

)

+ C2

AdA

(
−89

24
+

11

6
ln 2 − π2

6

)
(C.4)

BAλf = CFdFnS (−4 + 8 ln 2) + CFdF(dF + 1)nS

(
1

ε
+ 3 + 6 ln

µ3

2m3

)
(C.5)

BBλf =
1

4
dF(dF + 1)nS

(
1

ε
− 1 + 8 ln 2 + 6 ln

µ3

2m3

)
(C.6)

Bλλf = dF(dF + 1)nS

(
−1

ε
− 8 + 4 ln 2 − 6 ln

µ3

2m3

)
+

1

2
dF(dF + 1)2 (C.7)

BAha = CFdFdAnS

(
1

2ε
+

3

2
+ 2 ln

µ3

2m3

+ ln
µ3

2mD

)
(C.8)

B′

Bhb =
1

4
dFnS

(
1

2ε
+

3

2
+ 2 ln

µ3

2m3

+ ln
µ3

2m′

D

)
(C.9)

B′

Ahb = CFdFnS

(
1

2ε
+

3

2
+ 2 ln

µ3

2m3

+ ln
µ3

2m′

D

)
(C.10)

BBha =
1

4
dFdAnS

(
1

2ε
+

3

2
+ 2 ln

µ3

2m3

+ ln
µ3

2mD

)
(C.11)

BAhf = CAdAdFnS

(
1

2ε
+

3

2
+ 2 ln

µ3

2mD

+ ln
µ3

2m3

)
(C.12)

Bhhf = dFdAnS

(
− 1

2ε
− 4 − 2 ln

µ3

2(m3 + mD)
− ln

µ3

2m3

)
(C.13)

Bhha = dFdAnS

(
− 1

2ε
− 4 − 2 ln

µ3

2(m3 + mD)
− ln

µ3

2mD

)
(C.14)

B′

hhf = dFnS

(
− 1

2ε
− 4 − 2 ln

µ3

2(m3 + m′

D
)
− ln

µ3

2m3

)
(C.15)

B′

hhb = dFnS

(
− 1

2ε
− 4 − 2 ln

µ3

2(m3 + m′

D
)
− ln

µ3

2m′

D

)
(C.16)

b(x) = CFdFnS

(
− 1

8ε
− 1 − 1

2
ln

µ3

2m3 + mD + m′

D

− 1

4
ln

µ3

2x

)
(C.17)

D. Diagrams contributing to the pressure

In this appendix we list all the diagrams required for the computation of the pressure. The

notation is as follows: solid lines represent left-handed fermion doublets and right-handed
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fermion singlets (thick) or just fermion doublets (thin), dashed lines fundamental scalars,

dot-dashed lines SU(2) and U(1) (thick) or just SU(2) (thin) adjoint scalars, wavy lines

SU(2) and U(1) (thick) or just SU(2) (thin) gauge bosons and curly lines SU(3) gauge

bosons. Dotted lines stand for ghosts.

Defining the integration measures as

∑∫

P
≡

(
eγΛ2

4π

)ε

T
∑

p0=2nπT

∫
d3−2εp

(2π)3−2ε
, (D.1)

∑∫

{P}
≡

(
eγΛ2

4π

)ε

T
∑

p0=(2n+1)πT

∫
d3−2εp

(2π)3−2ε
, (D.2)

∫

p
≡

(
eγΛ2

4π

)ε ∫
d3−2εp

(2π)3−2ε
, (D.3)

the diagrams are given in terms of the following integrals:

In ≡ ∑∫

P

1

(P 2)n
, (D.4)

Ĩn ≡ ∑∫

{P}

1

(P 2)n
, (D.5)

Mi,j ≡ ∑∫

PQR

1

P 2Q2[R2]i[(P − Q)2]j(Q − R)2(R − P )2
, (D.6)

M̃i,j ≡ ∑∫

{PQR}

1

P 2Q2[R2]i[(P − Q)2]j(Q − R)2(R − P )2
, (D.7)

Ni,j ≡ ∑∫

{PQ}R

1

P 2Q2[R2]i[(P − Q)2]j(Q − R)2(R − P )2
, (D.8)

In(m) ≡
∫

p

1

(p2 + m2)n
, (D.9)

Jn(m) ≡
∫

pq

1

(p2 + m2)(q2 + m2)n(p − q)2
, (D.10)

Kn(m) ≡
∫

pq

1

(p2 + m2)(q2 + m2)[(p − q)2]n
, (D.11)

Mi,j(m) ≡
∫

pqr

1

(p2 + m2)(q2 + m2)(r2 + m2)i[(p − q)2]j(q − r)2(r − p)2
, (D.12)

Ni,j(m) ≡
∫

pqr

1

(p2 + m2)(q2 + m2)[(q − r)2 + m2][(r − p)2 + m2][r2]i[(p − q)2]j
, (D.13)

Li,j(m) ≡
∫

pqr

1

(p2 + m2)[(r − p)2 + m2]i(q2 + m2)j [(q − r)2 + m2]r2(p − q)2
, (D.14)

IC(m1,m2,m3,m4, 0) ≡
∫

pqr

1

(p2 + m2
1)[(r − p)2 + m2

2][(q − r)2 + m2
3](q

2 + m2
4)r

2
,(D.15)

IE(m1,m2,m3,m4) ≡
∫

pqr

1

(p2 + m2
1)(q

2 + m2
2)[(p − r)2 + m2

3][(q − r)2 + m2
4]

. (D.16)

The integrals are evaluated in appendices A and B of [4] and in [39].
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D.1 Diagrams in the full theory

Here we list the results for the diagrams from the 4d theory.

−2 × = − [1 + 2Nc + dF (1 + Nc)]nFĨ ′
0 (D.17)

2 × = dFnS

[
I ′

0 + ν2I1 +
1

2
ν4I2

]
+ O

(
ν6

)
(D.18)

1 × =
1

2
D (dA + 1) I ′

0 (D.19)

−2 × = − (dA + 1) I ′
0 (D.20)

1

8
× = −1

4
D (D − 1) CAdAZgg

2I2
1 (D.21)

1

2
× = −dF (1 + dF)ZλλnS

(
I2

1 + 2ν2I1I2

)
(D.22)

1

2
× = −1

4
DdF

(
4CFZgg

2 + Zg′g
′2
)
nS

(
I2

1 + ν2I1I2

)
(D.23)

1

12
× =

3

4
(D − 1)CAdAZgg

2I2
1 (D.24)

−1

2
× = −1

4
CAdAZgg

2I2
1 (D.25)

−1

2
× =

2 − D

2

[
CFdF (1 + Nc)Zgg

2 +

(
1 +

dF

4
+

20 + dF

36
Nc

)
Zg′g

′2

]
nF

×
(
Ĩ2

1 − 2Ĩ1I1

)
(D.26)

1

2
× =

1

2
dF

(
CFZgg

2 +
1

4
Zg′g

′2

)
nS

(
3I2

1 + 2ν2I1I2

)
(D.27)

−1 × = 2NcZ2
Y g2

Y

(
2I1Ĩ1 − Ĩ2

1 + 2ν2Ĩ1I2

)
(D.28)

1

24
× =

1

8

(
5D − 5 − 3

4

)
C2

AdAg4M0,0 (D.29)

−1

3
× = − 1

16
C2

AdAg4M0,0 (D.30)

−1

4
× = − 1
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]
(D.47)

1

4
× =

1

4
n2

F

{
CFTFdF (1 + Nc)

2 g4 +

[
1 +

dF

4
+

Nc

36
(20 + dF)

]2

g′4

}

×
[
4N2,−2 + (D − 4)N0,0 − 4(6 − D)Ĩ2
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)2
Ĩ2
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D.2 Diagrams in the effective theory

The required d = 3−2ε dimensional integrals have been worked out in the literature except

for the particular combination of diffenent masses and massless propagators in eq. (D.90).

The results are given here in terms of the integrals I, J , K, M , N and L given in the

2 × = dFI ′0(m3) (D.69)

1 × =
1

2
dAI ′0(mD) +

1

2
I ′0(m

′
D) (D.70)

1

2
× = −dF(dF + 1)λ3I

2
1 (m3) (D.71)

1

2
× = −dFdAh3I1(m3)I1(mD) − dFh′

3I1(m3)I1(m
′
D) (D.72)

1

2
× = −1

2
dF

(
CFg2

3 +
1

4
g′23

)[
I2
1 (m3) + 4m2

3J1(m3)
]

(D.73)

1

4
× = −1

4
CAdAg2

3

[
I2
1 (mD) + 4m2

DJ1(mD)
]

(D.74)

1

3
× = CACFdFg4

3

[
−1

4
M1,−1 − M−1,1 −

1

2
I1J1 − 2m2

3M1,0

]

m=m3

(D.75)

1

4
× =

[(
C2

FdF − 1

2
CACFdF

)
g4
3 + 2CFdF

1

4
g2
3g

′2
3 +

dF

16
g′43

]

×
[
N1,−1(m3) + L1,−1(m3) + M0,0(m3) − 6I1(m3)J1(m3) +

5

4
N0,0(m3)

+ 6m2
3N1,0(m3) − 8m2

3M1,0(m3) + 4m4
3N1,1(m3)

]
(D.76)

1

6
× = C2

AdAg4
3

[
−1

8
M1,−1 −

1

2
M−1,1 −

1

4
I1J1 − m2

DM1,0

]

m=mD

(D.77)

1

8
× = C2

AdAg4
3

[
1

4
N1,−1(mD) +

1

4
L1,−1(mD) +

1

4
M0,0(mD) − 3

2
I1(mD)J1(mD)

– 27 –



J
H
E
P
0
1
(
2
0
0
6
)
0
6
0

+
5

16
N0,0(mD) +

3

2
m2

DN1,0(mD) − 2m2
DM1,0(mD) + m4

DN1,1(mD)

]
(D.78)

1 × =

[(
C2

FdF − 1

4
CACFdF

)
g4
3 + 2CFdF

1

4
g2
3g

′2
3 +

dF

16
g′43

]

×
[
M1,−1(m3) − 4M0,0(m3) + 2I1(m3)J1(m3) + 8m2

3M1,0(m3)
]

(D.79)

1

2
× =

(
CFdFg2

3λ3 +
dF(dF + 1)

4
g′23 λ3

)[
N0,0 − 4I1J1 + 4m2

3N1,0

]
m=m3

(D.80)

1

2
× = C2

AdAg4
3

[
3

8
M1,−1 −

3

2
M0,0 +

3

4
I1J1 + 3m2

DM1,0

]

m=mD

(D.81)

1

4
× =

[(
C2

FdF − 1

4
CACFdF

)
g4
3 + 2CFdF

1

4
g2
3g

′2
3 +

dF

16
g′43

]
dM0,0(m3) (D.82)

1

8
× = dF(dF + 1)λ2

3N0,0(m3) (D.83)

1

8
× = C2

AdAg4
3

3d

8
M0,0(mD) (D.84)

1

4
× = h2

3dFdAIE(m3,m3,mD,mD) + h′2
3 dFIE(m3,m3,m

′
D,m′

D)

+ 2CFdF
1

4
g2
3g

′2
3 IE(m3,m3,mD,m′

D) (D.85)

1

4
×


 + + +




= −CACFdFg4
3

3d − 2

4(d − 1)

[
M0,0 + 4m2

3M0,1

]
m=m3

(D.86)

1

4
×


 + +


 =

(
CFTFdFg4

3 +
d2
F

16
g′43

)

×
[
d − 2

d − 1
I1

(
J1 + 4m2

3K2

)
+

1

4(d − 1)

(
N0,0 + 8m2

3N1,0 + 16m4
3N2,0

)]

m=m3

(D.87)

1

4
×


 + + +




= −C2
AdAg4

3

3d − 2

8(d − 1)

[
M0,0 + 4m2

DM0,1

]
m=mD

(D.88)

1

4
×


 + +


 (D.89)

= C2
AdAg4

3

[
d − 2

4(d − 1)
I1

(
J1+ 4m2

DK2

)
+

1

16(d − 1)

(
N0,0+ 8m2

DN1,0+ 16m4
DN2,0

)]

m=mD

– 28 –



J
H
E
P
0
1
(
2
0
0
6
)
0
6
0

1

4
×


 + +




= CACFdFg4
3

{
1

4(d − 1)
IE(m3,m3,mD,mD) +

1

d − 1
(m2

3 + m2
D)IC(m3,m3,mD,mD, 0)

+
d − 2

2(d − 1)

[
I1(m3)

(
J1(mD) + 4m2

DK2(mD)
)

+ I1(mD)
(
J1(m3) + 4m2

3K2(m3)
)]

+
1

(4π)3
1

6(d − 1)

[
m2

D

m3
ln

m3 + mD

mD
+

m2
3

mD
ln

m3 + mD

m3
− 4(m3 + mD)

]}
(D.90)

1

2
× =

(
C2

FdFg4
3 + 2CFdF

1

4
g2
3g

′2
3 +

dF

16
g′43

)[
1

2
I2
1I2 − 2I1J1 + 2M0,0

+ 4m2
3I1J2 − 8m2

3M1,0 + 8m4
3M2,0

]

m=m3

(D.91)

1 × =

(
CFg2

3 +
1

4
g′23

)
dF(dF + 1)λ3

[
2I2

1I2 − 4I1J1 + 8m2
3I1J2

]
m=m3

(D.92)

1

2
× =

(
CFdFg2

3 +
1

4
dFg′23

) (
dAh3I1(mD) + h′

3I1(m
′
D)

)

×
[
I1(m3)I2(m3) − 2J1(m3) + 4m2

3J2(m3)
]

(D.93)

1

2
× = dF(dF + 1)2λ2

3I
2
1 (m3)I2(m3) (D.94)

1

8
× =

1

2
dF

[
dAh3I1(mD) + h′

3I1(m
′
D)

]2
I2(m3) (D.95)

1

2
× =

(
dAh3I1(mD) + h′

3I1(m
′
D)

)
dF(dF + 1)λ32I1(m3)I2(m3) (D.96)

1

4
× = C2

AdAg4
3

[
1

4
I2
1I2 − I1J1 + M0,0 + 2m2

DI1J2

−4m2
DM1,0 + 4m4

DM2,0

]

m=mD

(D.97)

1

2
× = CAdAdFg2

3h3I1(m3)

[
I1(mD)I2(mD)

−2J1(mD) + 4m2
DJ2(mD)

]
(D.98)

1

4
× =

(
dAh2

3I2(mD) + h′2
3 I2(m

′
D)

)
d2
FI2

1 (m3) (D.99)

– 29 –



J
H
E
P
0
1
(
2
0
0
6
)
0
6
0

References

[1] E. Laermann and O. Philipsen, Status of lattice QCD at finite temperature, Ann. Rev. Nucl.

Part. Sci. 53 (2003) 163 [hep-ph/0303042].

[2] F. Karsch, Lattice results on QCD thermodynamics, Nucl. Phys. A 698 (2002) 199

[hep-ph/0103314].

[3] P.H. Ginsparg, First order and second order phase transitions in gauge theories at finite

temperature, Nucl. Phys. B 170 (1980) 388;

T. Appelquist and R.D. Pisarski, High-temperature Yang-Mills theories and three-dimensional

quantum chromodynamics, Phys. Rev. D 23 (1981) 2305.

[4] E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996)

3421 [hep-ph/9510408].

[5] E.V. Shuryak, Theory of hadronic plasma, Sov. Phys. JETP 47 (1978) 212;

S.A. Chin, Transition to hot quark matter in relativistic heavy ion collision, Phys. Lett. B 78

(1978) 552.

[6] J.I. Kapusta, Quantum chromodynamics at high temperature, Nucl. Phys. B 148 (1979) 461.

[7] T. Toimela, The next term in the thermodynamic potential of QCD, Phys. Lett. B 124

(1983) 407.

[8] P. Arnold and C.-X. Zhai, The three loop free energy for pure gauge QCD, Phys. Rev. D 50

(1994) 7603 [hep-ph/9408276]; The three loop free energy for high temperature QED and

QCD with fermions, Phys. Rev. D 51 (1995) 1906 [hep-ph/9410360].

[9] C. Zhai and B.M. Kastening, The free energy of hot gauge theories with fermions through g5,

Phys. Rev. D 52 (1995) 7232 [hep-ph/9507380].

[10] K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, The pressure of hot QCD up to

g6 ln(1/g), Phys. Rev. D 67 (2003) 105008 [hep-ph/0211321].

[11] K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, Four-loop vacuum energy density

of the SU(Nc)+ adjoint Higgs theory, JHEP 04 (2003) 036 [hep-ph/0304048].

[12] A. Vuorinen, The pressure of QCD at finite temperatures and chemical potentials, Phys. Rev.

D 68 (2003) 054017 [hep-ph/0305183].

[13] A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96

(1980) 289;

D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev.

Mod. Phys. 53 (1981) 43.

[14] A. Hietanen, K. Kajantie, M. Laine, K. Rummukainen and Y. Schroder, Plaquette expectation

value and gluon condensate in three dimensions, JHEP 01 (2005) 013 [hep-lat/0412008].

[15] G.W. Anderson and L.J. Hall, The electroweak phase transition and baryogenesis, Phys. Rev.

D 45 (1992) 2685.

[16] M.E. Carrington, The effective potential at finite temperature in the standard model, Phys.

Rev. D 45 (1992) 2933.

[17] M. Dine, R.G. Leigh, P.Y. Huet, A.D. Linde and D.A. Linde, Towards the theory of the

electroweak phase transition, Phys. Rev. D 46 (1992) 550 [hep-ph/9203203].

– 30 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C53%2C163
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=ARNUA%2C53%2C163
http://xxx.lanl.gov/abs/hep-ph/0303042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CA698%2C199
http://xxx.lanl.gov/abs/hep-ph/0103314
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB170%2C388
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD23%2C2305
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C3421
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C3421
http://xxx.lanl.gov/abs/hep-ph/9510408
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SPHJA%2C47%2C212
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB78%2C552
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB78%2C552
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB148%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB124%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB124%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C7603
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C7603
http://xxx.lanl.gov/abs/hep-ph/9408276
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C1906
http://xxx.lanl.gov/abs/hep-ph/9410360
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C7232
http://xxx.lanl.gov/abs/hep-ph/9507380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105008
http://xxx.lanl.gov/abs/hep-ph/0211321
http://jhep.sissa.it/stdsearch?paper=04%282003%29036
http://xxx.lanl.gov/abs/hep-ph/0304048
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C054017
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C054017
http://xxx.lanl.gov/abs/hep-ph/0305183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB96%2C289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB96%2C289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C53%2C43
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C53%2C43
http://jhep.sissa.it/stdsearch?paper=01%282005%29013
http://xxx.lanl.gov/abs/hep-lat/0412008
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2685
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C2933
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD46%2C550
http://xxx.lanl.gov/abs/hep-ph/9203203


J
H
E
P
0
1
(
2
0
0
6
)
0
6
0

[18] J.I. Kapusta, Phase diagram of electroweak theory, Phys. Rev. D 42 (1990) 919.

[19] P. Arnold and O. Espinosa, The effective potential and first order phase transitions: beyond

leading-order, Phys. Rev. D 47 (1993) 3546 [hep-ph/9212235], erratum Phys. Rev. D 50

(1994) 6662.

[20] K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3-d physics and the

electroweak phase transition: perturbation theory, Nucl. Phys. B 425 (1994) 67

[hep-ph/9404201].

[21] Z. Fodor and A. Hebecker, Finite temperature effective potential to order g4, λ2 and the

electroweak phase transition, Nucl. Phys. B 432 (1994) 127 [hep-ph/9403219].

[22] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high

temperature dimensional reduction and their application to the standard model, Nucl. Phys. B

458 (1996) 90 [hep-ph/9508379].

[23] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak

phase transition at mH & mW ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288].

[24] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The electroweak phase

transition: a non-perturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020].

[25] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A non-perturbative

analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B

493 (1997) 413 [hep-lat/9612006].

[26] F. Karsch, T. Neuhaus, A. Patkos and J. Rank, Critical Higgs mass and temperature

dependence of gauge boson masses in the SU(2) gauge-higgs model, Nucl. Phys. 53 (Proc.

Suppl.) (1997) 623 [hep-lat/9608087].

[27] M. Gurtler, E.-M. Ilgenfritz and A. Schiller, Where the electroweak phase transition ends,

Phys. Rev. D 56 (1997) 3888 [hep-lat/9704013].

[28] K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine and M.E. Shaposhnikov, The

universality class of the electroweak theory, Nucl. Phys. B 532 (1998) 283

[hep-lat/9805013].

[29] K. Kajantie, M. Laine, J. Peisa, K. Rummukainen and M.E. Shaposhnikov, The electroweak

phase transition in a magnetic field, Nucl. Phys. B 544 (1999) 357 [hep-lat/9809004].

[30] A. Gynther, The electroweak phase diagram at finite lepton number density, Phys. Rev. D 68

(2003) 016001 [hep-ph/0303019].

[31] F. Csikor, Z. Fodor and J. Heitger, Endpoint of the hot electroweak phase transition, Phys.

Rev. Lett. 82 (1999) 21 [hep-ph/9809291].

[32] T. Toimela, Thermodynamic potential of grand unified gauge theories, J. Phys. G 9 (1983)

L153.

[33] A. Rajantie, SU(5) + adjoint Higgs model at finite temperature, Nucl. Phys. B 501 (1997)

521 [hep-ph/9702255].

[34] E.J. Weinberg and A.Q. Wu, Understanding complex perturbative effective potentials, Phys.

Rev. D 36 (1987) 2474.

[35] Particle Data Group collaboration, S. Eidelman et al., Review of particle physics, Phys.

Lett. B 592 (2004) 1.

– 31 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD42%2C919
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD47%2C3546
http://xxx.lanl.gov/abs/hep-ph/9212235
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C6662
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C6662
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB425%2C67
http://xxx.lanl.gov/abs/hep-ph/9404201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB432%2C127
http://xxx.lanl.gov/abs/hep-ph/9403219
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB458%2C90
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB458%2C90
http://xxx.lanl.gov/abs/hep-ph/9508379
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C77%2C2887
http://xxx.lanl.gov/abs/hep-ph/9605288
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB466%2C189
http://xxx.lanl.gov/abs/hep-lat/9510020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C413
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB493%2C413
http://xxx.lanl.gov/abs/hep-lat/9612006
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C623
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C53%2C623
http://xxx.lanl.gov/abs/hep-lat/9608087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD56%2C3888
http://xxx.lanl.gov/abs/hep-lat/9704013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB532%2C283
http://xxx.lanl.gov/abs/hep-lat/9805013
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB544%2C357
http://xxx.lanl.gov/abs/hep-lat/9809004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C016001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C016001
http://xxx.lanl.gov/abs/hep-ph/0303019
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C82%2C21
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C82%2C21
http://xxx.lanl.gov/abs/hep-ph/9809291
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG9%2CL153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JPHGB%2CG9%2CL153
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB501%2C521
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB501%2C521
http://xxx.lanl.gov/abs/hep-ph/9702255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2474
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD36%2C2474
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB592%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB592%2C1


J
H
E
P
0
1
(
2
0
0
6
)
0
6
0

[36] M. Sher, Precise vacuum stability bound in the standard model, Phys. Lett. B 317 (1993) 159

[hep-ph/9307342].

[37] F. Csikor, Z. Fodor, J. Hein, A. Jaster and I. Montvay, Numerical tests of the electroweak

phase transition and thermodynamics of the electroweak plasma, Nucl. Phys. B 474 (1996)

421 [hep-lat/9601016].
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