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ABSTRACT: We compute the pressure of the standard model at high temperatures in the
symmetric phase to three loops, or to O(g®) in all coupling constants. We find that the
terms of the perturbative expansion in the SU(2) + Higgs sector decrease monotonically
with increasing order, but the large values of the strong coupling constant g; and the
Yukawa coupling of the top quark gy make the expansion in the full theory converge more
slowly. The final result is observed to be about 10% smaller than the ideal gas pressure

commonly used in cosmological calculations.
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1. Introduction

The most fundamental quantity for the thermodynamics of a finite temperature gauge
theory is its free energy. Its partial derivatives give measurable values of thermodynamic
quantities and its singularities indicate possible phase transitions. Extensive work has been
devoted to the study of the free energy (F = fV = —pV') of QCD and electroweak theory
in various temperature ranges and with various levels of rigor.

For QCD and low T, (T' < T, ~ Aqcp) one can use hadron gas models, the region
around T' = T, can and has to be studied with first principle lattice Monte Carlo methods [il,
E] and at large T' the method with controllable accuracy is the effective theory one [E, @]
This is based on asymptotic freedom and on separating the relevant scales T, the electric
scale mg = ¢gT and the magnetic scale my; = ¢g>T. The computation of the coefficients of
the expansion in g has a long history: the results of orders ¢* [H], ¢ [, ¢*Ing [[l], ¢* B
g® B, f] and ¢%Ing [fd, are known. The calculation has also been generalized to the
case when the chemical potentials associated with quarks are nonzero [[[J]. This expansion
has several interesting finite-T-effects: odd powers of g appear, the logarithmic terms are
logs of the ratios of the matching scales, log(T/mg) and log(mpg/mu), and, finally, the
coefficient of the ¢® term is not perturbatively calculable 3, since vacuum diagrams of
all orders in the loop expansion contribute to it. This is due to the fact that the effective
theory of the magnetic sector is confining. However, the coefficient of the g% term can be
determined by a combination of numerical and several involved analytic computations [[L4].
One then has the pressure as a well defined expansion in the coupling constant g determined
in the MS scheme.

While both QCD and the electroweak sector of the standard model are gauge field
theories, there is a crucial difference between them: the Landau pole of QCD corre-
sponds to a length scale 1/Aqcp =~ 107" m, the length scale of a nucleon, while for
the electroweak theory 1/Agw =~ 10° m, comparable to the radius of the Earth. Thus,
while confinement effects are important in the QCD case near T, rendering perturba-
tive calculations unreliable, they are negligible in the electroweak case and therefore it
is, at least in principle, possible to apply perturbative methods down to T, and even
below that. Due to this there has been an extensive amount of work devoted to cal-
culating the properties of the electroweak phase transition using, for example, pertur-
bative 1-loop [[[§—[l§ and 2-loop [[d-P1|] effective potential calculations. Those meth-
ods are reliable only for small Higgs masses and the complete solution of the problem
required first a perturbative matching of the full 4-dimensional theory to an effective 3-
dimensional theory 23] and then numerically solving the phase diagram from the effective
theory using lattice Monte Carlo techniques [Pd—P7]. The phase diagram was observed
to have a first order line which ends in a 2nd order critical point of Ising universality
class [P§. Similar techniques have been used to solve the phase diagram also when the
external U(1) magnetic field [R9] or the chemical potentials related to the baryon and lep-
ton numbers [B0] are nonzero. The phase diagram has also been solved with numerical
studies of the full 4-dimensional theory [BI]. Grand unified theories have been studied

in [B2, BJ].



The structure of the phase diagram and the properties of the phase transition (latent
heat, interface tension, correlation lengths, order parameter discontinuities) only depend
on the discontinuities of the free energy, not on its value. In the effective theory approach
there is thus an important theoretical step missing, the matching of the value of the free
energy itself. For QCD this problem was formulated and solved in [f, [[d]. The purpose
of this paper is to do the same for the standard model. At the same time we obtain the
pressure to order ¢°.

To this end we have to carry out a number of rather extensive computations. First,
we compute the 3-loop free energy in the full 4d standard model by evaluating the 3-loop
finite-T" sum-integrals in the MS scheme. Schematically, we need F' = 14 ¢ + ¢g*(1/e + 1),
where the g* coefficient contains 1/e terms due to infrared (IR) divergences which then
cancel against the ultraviolet (UV) divergences of the effective theory. The UV divergences
of the full theory are cancelled by the standard renormalization procedure. Second, we
determine the 2-loop screening masses of the gauge fields Ag, By in the full 4d theory
in the MS scheme. Schematically, we need m? = ¢?(1 4+ ¢) + ¢g*. We then repeat the
same for the fundamental scalar mass, which is present already on the tree-level but gets
thermal corrections. Unlike the screening masses, it has additional divergences, so we need
m? = —v? 4+ g%(1 4 €) + g*(1/e + 1). Finally, we compute the 3-loop free energy in the 3d
effective theory. Schematically, we need f = m? + g§m2 + gglm.

Our final result will have some qualitative differences to the pressure of hot QCD.
There is a mass scale v independent of T" in the lagrangian which gives rise to terms such
as v2T?, not present in pQcp.  Another difference is related to renormalization of the
fundamental scalar mass in 3d effective theory. In a gauge theory with no scalar particles
all the parameters of the 3d theory are finite to order ¢g*, whereas in this theory the mass of
the fundamental scalar contains divergences requiring renormalization. We also have terms
of order ¢°In g, which cancel in QCD. In addition, the different mass scales mp, mfp, and
ms lead to terms of type g° Inmq/ma, where m; are some combinations of these masses.

The paper is organized as follows: in section P we explicitly define the theory we are
working with and fix various conventions. In section [| we briefly review the method of
dimensional reduction. Sections [i, | and [ contain the calculations. Finally, in section []
we discuss the result, the details of which are given in appendices [§-D|.

2. The basic setting

The theory we consider is the SU(3).xSU(2)z, x U(1)y standard model with np = 3 families
of fermions and ng = 1 fundamental scalar doublets, and the quantity we will evaluate is
the pressure of this theory at high temperatures. The theory is specified by the euclidean
action (in the units h =c=1)

S = /OﬁdT/dd:cE (2.1)

1 1 1
L= GG + 7w P + JWEL, Wi, + D,®'D,® — 120Td + \(DTP)? (2.2)



Pl +éerPer + qrPar + upPur + drPdr + igy <@L72@*tR - ER(CI)*)TTQQL) ,

where
Gl = O, AL — 0, A% + g™ AL AS, F, = 0,B,—09,B,,
Wi, = 0,C8 — 0,0 + gs f**°ChCs
D —0,8- 9291950 Dol — (D&
p® = Op® = 5 AT "'7#7 p® = (D,®),
i ig
Pis = <a“zL — Al + %BHZL> ,
Der = (aueR + ig'BueR)
Dqr, = Ouqs — 2 g0 _Wp — g, COT®
qr = Y ndL 9 uT 4L 6 pdr —gsC 4 4L |,
2ig' ,
Dug =y, <8MuR — TgBuuR — zgSCgT“uR>
ig ,
lDdR = Yu <(9“dR + %Bﬂd}g - ngCZTadR> . (2.3)

Here AZ, B, and C}; are gauge bosons of weak-, hyper- and strong interactions, respec-
tively; @ is the fundamental scalar doublet; I;, and eg are the left-handed lepton doublets
and the right-handed lepton singlets (wrt. weak charge), and ¢, ug and dr are the left-
handed quark doublets and the right-handed up and down -type quark singlets. Only
the Yukawa coupling for the top quark is taken into account. Summation over different
families is assumed. Also, d = 3 — 2¢ in dimensional regularization, u, v = 0,...,d. The
gamma matrices are defined in euclidean space so that {v,, v} = 20, {75,7.} = 0 and
Tr Y57, Yo X €uvpo- The color indices are a = 1,...,da for the weak interaction and
a=1,...,N2—1 for the strong interaction. The different group theory factors for SU(N)
with generators T% are defined as:

Tyd® = Tr TT?, Crdij = [T°T],;,
CA(Sab _ facefbce’ dp = 5aa’ dp = 5“

(2.4)

For SU(2) with T* = 7%/2 they are Tp = 1/2, Cr = 3/4, Cp = 2, dy = 3 and dp = 2.

The momentum integrations are done using dimensional regularization for both IR
and UV divergences. The dimensionful parameter is chosen according to the MS scheme,
which amounts to replacing the scale parameter p by

A= <%>1/2 . (2.6)

All couplings are implicitly scaled to their 4d (e = 0) dimension with y, so that e.g. g> =
p~2¢g%, where § is the coupling in the 4 — 2e-dimensional lagrangian, [§] = e. We use the
Feynman gauge (¢ = 1) for the gauge particle propagators at all stages of the calcula-
tion. The final result should, of course, be gauge independent, since pressure is a physical
quantity, but we have not checked this explicitly.



The theory contains six couplings that run with the renormalization scale: gauge
couplings ¢’, g and g, the fundamental scalar quartic self-coupling A and its mass parameter
v? and gy. The counterterms in the standard model can be found in [[J]. However, the
terms proportional to A were neglected there, while the terms including ¢’ were dropped
in [, so for completeness we list the running of the needed parameters here:

1 1 A
viA) = V¥ (1) + 5 <_3CF92 = 329" + Negy +2(dr + 1)/\> ! " (2.7)
_ 1 3 2 _ l 4 i 14 § Cr 2 12
AA) = Ap) + 2= 52 (d ) (CF + CrTr 4CACF> T

3 A
—6CpAg* — 5)\9’2 + (8 4 2dp)\? — 39y + 2NCA9§> In W (2.8)

1 3 3 9 17 A
2 2 2 2 2 2 2
gy(A) = gy(,Uz) + 87‘(2 |:<_ +Nc> 9y — N_ (NC - 1) - Zg 129, :| gy In ;, (29)
2(A) = g2 (n) + ! Lo +4(N +1) LNy A Lr 4 A (2.10)
= — | —= n n— .
g g+ g3 7 OA T3 vt gTins ) g7in 7,
1 2 5 dF N, 1 dp A
2(A) = ¢ — |21+ =N, 14 =5 - = “In=, (2.11
g() g(u)+87{'2 3 +9 c 6 +9 +34nS g nua( )
1 11 4 A
2 2 4
A) = — (-5 Ne+ 2 In —. 2.12
) = 0 + o (= Ve e ) gt (212)

Note that A as we have defined it differs from [1g] by a factor 6. Numerically, we fix
the values of these couplings at the scale y = myz according to their tree-level relation to
different physical parameters:

1, 1

VA(my) = S Amy) = %Gum%, (2.13)
G (mz) = 2V3G,m, P(mz) = V2G,mly, (2.14)
g*(mz) = /26, (m% —myy), as(myz) = 0.1187, (2.15)

where myy is the unknown mass of the Higgs boson, myy = 80.43 GeV, mz = 91.19 GeV and
my = 174.3 GeV are the masses of the W and Z bosons and the top quark, respectively,
and G, = 1.664 - 107 GeV~2 is the Fermi coupling constant. We always assume that
ng = 1 and nr = 3 unless stated otherwise, but use the general form to keep track of
different contributions. Note, in particular, that the result will not be valid for ng > 1,
since the mixing of scalars is not taken into account. We employ a power counting rule
A~ g? ~ g2~ 912/ ~ ¢ and assume the temperature to always be so high that the
relation v? < ¢?T? applies.
The physical observable we are studying is the pressure, defined by
p(T) = lim —ln /DADtz/JDCI)eXp( S). (2.16)

Vooo V

It is normalized such that the (real part of the) pressure of the symmetric phase vanishes at
T = 0.! The purpose is to calculate the pressure up to, and including, order ¢°(1+1n g)T*,

1Since the symmetric phase is unstable at T' = 0, the pressure there develops an imaginary part when



employing the power counting rules above. This amounts to calculating 1-, 2- and 3-
loop vacuum diagrams contributing to the pressure. These, together with their symmetry
factors, are listed in appendix [. Other interesting variables, such as entropy and energy
densities s(T') and €(T'), can then be evaluated using standard thermodynamic relations,
s(T) = 0p/oT, e(T) =Ts(T) — p(T).

3. Separation of scales

In this section we will shortly review the rationale of dimensional reduction applied to our
case. A more complete treatment can be found, e.g., in [R2].

A straightforward approach in analytic calculations is to use perturbation theory in
evaluating the quantities one is interested in. Since we are working in a temperature range
where the gauge couplings, due to asymptotic freedom, are small, one could naively hope
this to be a consistent procedure. However, in practice the straightforward expansion in
¢? is inhibited by various infrared singularities requiring resummations. This in turn leads
to the introduction of many different mass scales. At high temperature and small coupling
the dominant energy scale is the temperature 7', while the electric and magnetic scales g7’
and ¢?>T are suppressed by powers of g. The perturbative result includes logarithms of all
these, making it impossible to choose the UV cutoff in such a way that there would not be
any large logarithms left. This seems to render perturbation theory unusable.

The solution, as is well known [[J], is to separate the contributions of different scales
into successive effective theories, where all the large scales are integrated out one by one.
First, we integrate

p(T) =pr(T) + éln /DAkDAODCP exp (—Sg), (3.1)

where Sg contains only the static Matsubara modes of the gauge bosons and of the fun-
damental scalar (Higgs) field. The contributions of the nonzero Matsubara modes and
fermions to the pressure show up as the matching constant pg (section f) and in the pa-
rameters of Sg (section [f]). The spatial (magnetic) gauge field components remain massless,
while the temporal component gets a thermal mass mp ~ ¢1'. The theory defined by Sk
can then be viewed as a 3d gauge theory with adjoint and a fundamental scalar fields.
The effective theory thus obtained still contains contributions from two scales, g7T" and
¢*T, so one more reduction step is useful. We integrate out the scale ¢g7" and are left with

p(T) = pulT) + pu(D) + 7 [ DADBexp (~S40). (3:2)

The precise form of the remaining effective theory Sy depends on the conditions of the
system. If the temperature is much higher than the critical temperature of the system?,
then both the adjoint and the fundamental scalars can be integrated out since both of

loop corrections are calculated. The imaginary part can be related to the decay rate of the unstable

phase @]

2Within perturbation theory there is always a first order phase transition in electroweak theory.



them are massive, m ~ g¢g1I', and thus the remaining effective theory contains only the
spatial gauge fields. The only mass scale of the theory is then provided by the 3d gauge
coupling and is of the order ¢?T. Consequently, the contribution of this theory to the
pressure is of the order g% However, close to the phase transition the fundamental scalar,
which drives the transition, becomes light and we are not allowed to integrate it out at the
same time as the adjoint scalars. Then the remaining effective theory contains both the
spatial gauge fields and the fundamental scalar field, which now has a mass of the order
¢*/2T. To leading order the contribution from this theory to the pressure is then of the
order ¢?/27% = g4\/§ T4,

In the present paper we will just consider the case when the temperature is much
higher than the critical temperature, and postpone the study of the case when the system
is near the phase transition to a later work. The final result of our calculation can then be
written as

p(T) = pe(T) + pm(T) + pacn(T) + O(g°TH), (3.3)

where pqcp can be taken from [E, B, [id, H] One-loop quark diagrams are included in pg,
so they must be subtracted from pgcp.

4. Calculation of the pressure pg

The contribution of the nonzero Matsubara modes and fermions to the pressure given
by the matching constant pg is determined by calculating the path integral in eq. (R.16)
without any resummations (appendix [D.I)). The calculation involves two different mass
scales, the temperature (277) and the mass of the Higgs field (v2). Since we assume the
temperature to always be so high that v? < ¢?T?, we can expand the scalar propagator in
powers of 2 and keep only terms up to the desired order (integration over the scale 27T
is infrared safe and thus pg must be analytic in #2). The general form of pg(T) can then
be written as

pe(T) = T* {aEl +g*apa+ g%aps + Aaps + gyapy

1
+ @) <g4OéEAA + g apss + (99) s + Napa + AgPapar + A\gappa

+ gyapyy + (99v) apay + (¢'9y)*appy + A\g¥apya

+ (99s)*apas + (9'gs)*apps + (gygs)zOéEysﬂ

1
+ ’T? gy + — (gQQEAV + g% app, + Mgy + Q%QEYV)
(4m)?

4
+ (ZT)QQEW + T4 0(g%). (4.1)
The values of all the coefficients ap can be found in appendix [A]. The contribution coming
solely from QCD is not included.
All the couplings in the expression above are the renormalized couplings and thus
run according to eqgs. (.7)-(R.13). However, not all the 1/¢ poles are cancelled by the
renormalization procedure as can be explicitly seen in the coefficents ag. The remaining



poles correspond to the IR divergences and are only cancelled when the contribution from
the effective theories to the pressure is taken into account.

5. Parameters of the 3d theory Sg

The 3d effective electroweak theory has the general form

1 1
Sp = /d% {ZG%G% + g Pk + (D;®)(D;®) + m2DTD + \3(dTD)?

1 1 1 1 1
+§(DiA3)2 + §m2DA8A8 + Z)\A(ASAE]L)Q + 5(6iB0)2 + §m§%BOBO

1
+h3®T®AGAL + hydT®By By — §g3géBo<I>TA87'a<I)} : (5.1)

where Gf; = 0;AY — 0;A% + g3e®™ AVAS, Fij = 0;Bj — 0;Bi, Di® = (9; — igsT® AL /2 +
ighB;/2)® and D; A% = 0; A% + g3¢2*°AYAS. All the couplings and masses in (f.1)) can be
determined to the required order in ¢g? by matching the static Green’s functions computed
in both the effective and the original theory.

5.1 Coupling constants

The 2-loop diagrams in the 3d theory are of the order g§m2 ~ O(g*). Therefore, the
leading order results for couplings are enough for our purposes, while the corrections would
contribute at gb. At tree-level the reduction to the 3d theory only includes scaling the fields
by VT, and therefore matching the Green’s functions gives

g3 = ¢*T, g% = ¢"*T,
A3 = AT, M4 = O(gY), (5.2)
hy = 1g°T, Ky = 14T

The quartic couplings of the adjoint scalars, A4 g, are not needed at this order. Expres-
sions for them can be found in [B9). Note that the relations above hold for (dimensionful)
parameters in the d-dimensional lagrangian. The dimensional regularization scale does not
need to be the same in 4d and 3d, which gives O(€) corrections to the above matching
formulas, e.g. g3 = (A/u3)*g?T, where A and pg3 are the 4d and 3d dimensional regulariza-
tion scales, respectively. At the end of the calculation we are going to set A = p3. When
properly renormalized, the 4d theory has only IR divergencies left and the scale A should
be interpreted as the factorization scale separating the full and the effective theory.

5.2 Mass parameters

In general, the mass parameters of the effective theory can be found by comparing the
poles of static propagators in both theories. In the full theory we have for the pole of the
propagator

k2 +m? + (k) = k2 + m? + TI(K?) + O3(k?) = 0, (5.3)



at k2 =k? = —mgff, ko = 0. Here II3(k?) is the contribution of n = 0 modes only, and this
part is also correctly produced by the effective theory, where the same propagator reads

24+ mi+T3(k*) =0 at k? = —m?g. (5.4)

For m < ¢T the leading order solution is k ~ ¢T. Since II(k?) has no infrared
divergence, we can expand it in k2,

(k) = TI(0) + kQ%ﬁ(O) +o. (5.5)

Up to O(g?) eq. (5.) then reads

d — _ _
k2 (1 n @H(D(OO Fm? T 0) + T (0) + (k) = 0, (5.6)

and the matching condition can be read from

m2 + (k) = (1 - %ﬁ(%)) [mz +1M ) + T 0) + Hg(kQ)] . (B
giving
m3 =m? + T7(0) + T2 (0) — (m? + TV (0)) %ﬁ(” (0). (5.8)

Note that II3 ~ ¢?>mT ~ ¢3T? cancels between the two equations, since we only need terms
up to g*. There are 1/e-divergencies at m%gg order in the free energy computed in this
theory, so we will also need the g?e-terms in the masses.

5.2.1 Adjoint scalar masses

Applying the procedure described above to the static Ag and By propagators gives, after
calculating all the 2-loop corrections to them,

4

mp = T* [92 (Be1 + Brse + O(e%)) + (497)2 (Bes + O(e)) + O(¢°)

2

_V2
+(49T)2 <5E,\)\ + Brsg: + Bey gy + Brrg” + ﬁEuWﬂ ; (5.9)
g/4

mp = T° [9'2 (81 + Brae + O() + {53 (B + O(0) + 06"
9/2 / ) /2 /2 TV §
+——5 | BaaA + BEs9s + Bey 9y + Beg” + Beu—5 | | - (5.10)
(4m) T
The coefficients 3 are listed in appendix [J.

In the above equation g and ¢’ are the renormalized couplings, which run as in
eqs. (R.10) and (R.11]). Substituting these into eqs. (5.9) and (f.10), we note that at O(e°)
all the dependence on the dimensional regularization scale A is cancelled by the running
of g’s.



There are also some electroweak corrections to the adjoint scalar mass of QCD. In
addition to pure QCD terms already given in [[f] we have

d ng 11
mip = msE‘QCD gAY <QCFdF792 +235

g et ) (511
and these corrections need to be taken into account in the one-loop term 2m3y /37 of the
QCD pressure.

Note that the adjoint scalar masses are finite, unlike the fundamental scalar mass
below. This is a direct consequence of the fact that the adjoint scalars are actually gauge
field components, which have no mass renormalizations, and there are no IR divergences
in the matching computation. Electroweak theory also includes a fundamental scalar field,
whose mass contains 1/e poles at two-loop level renormalization, since it is not protected
by the gauge symmetry.

5.2.2 Fundamental scalar mass

In [P the 3d mass of the fundamental scalar was calculated using effective potential
methods, but only O(e”) terms were given, and ¢’ terms were dropped at two-loop level.
We calculated this mass using the same methods as for the adjoint scalar masses, and
included also the O(g%€) corrections.

Unlike in the previous section, here we get UV divergencies proportional to 72 that
are not cancelled by the counterterms of the 4d theory. These are related to the mass
renormalization in the 3d theory, since the matching procedure gives the bare mass mg B
It serves as an additional check to calculate the 2-loop counterterm dircetly in the 3d theory
to see that it precisely cancels the 1/e-terms found here.

For the divergent part we have, substituting directly the correct numerical values for
group theory factors and setting ng =1,

T2 81 7 15 9 3
omd = —— g gt 2g%g? — DAg? — Sag? + 32 5.12
e (477)26< 617 tad T gyt e N (5.12)

while the counterterm in the 3d theory reads

1 39, 5 15 9. ) .

- S\ >\ 372 h 3hag? + 2h

(47)2e ( 619 T 539 T 539895 — Jhags — Jhags 335 + 5hi — 3hag + 205
(5.13)

The divergent part is independent of the gauge parameter £ in covariant gauges. This was
expected, since the gauge choice in the 3d theory should not depend on that of the 4d
theory.

The finite part gives the renormalized 3d mass,

2 912
( )2ﬁuA+ ( )QﬂuB + ( )2ﬁu)\+ ( )QﬂuY

mj(A) = —v* |1+

+T? [g?(Bar + Baze) + g% (Bp1 + Bp2e) + A(Ba1 + Brze) + g (By1 + By2€)

4 /4 2 12 by by )\2
(4g7T)2ﬁAA+ 5BBB + 9.9 5848 + a g)QﬁAA-l- a g)QﬁBA + (471)2ﬁ’\)‘

g
" (4228 (a2

,10,



929 Agy

4
ggy g2 Y U )ﬂsy-l‘( 4r)? ﬁAy+(4 )zﬁyy . (5.14)

(47)? (47)?

All the different coefficients 3, are given in appendix B.

_l’_

5 Bay + 5 BBy +

6. Calculation of the pressure py

Computing all the 3-loop vacuum diagrams given by the action (p.1) (appendix [D.3) and
treating ms as being of order gI" produces

pM(T) 1 2 o\ 3/2 2 16 4 "3 1 1 3
T rdens (ms +8m3)™" | o el ot g Yo )| T i 3 L dymd + 5B
1
+ (a2 [—dr(dp + 1)nsAsm3 — dpdanshsmamp — dpnshiymsmy

1 1 3 H3
Crg2+ —g2 ) nedpm? [ —— — 2 —21n 3
+< Pg3t 98 | msdrmy (oo T g T g e

1 3 3
Cndagim? [ —— — 2 13
oA Ag3mD< le 4 nszﬂ
1 4 /4 2 12 4 2
+ (@n ) gsmsBaay + g3 m3Bppy + 9595 m3Bapy + gsmpBaaa + g3 A3m3Baxy

+ gé2)\3m3BB)\f + )\gmgBA)\f + hgmgthf—{— hngtha—{— hé2m3Bl/zhf+ hgmi)Bl/mb
dp
+ g3g5ms2b(ms) + g3g5mpb(mp) + g3y mbb(mb) + ——(dahamp + Bymp)”

dmg
dah h12 2 + m2 +
+%3<;3+2 >+w%&@_ckmﬁgjﬁ+_gmﬁiiﬁ>
mp mD

mp ms ms mp
+ dr(dp + 1)A3(dahsmp + hsmp) + g3hsmp Bana+ g5 hsmp Bip,+ g3hsmp By,

+ g&hampBpha + g§h3m3BAhf] : (6.1)
Constants B, and the function b(x) are given in appendix [J. Due to divergences in
(m3 + om3)*"?

order terms it is enough to use the leading order result

3
mi ~ma = —v? 4 T2 <16

we have to expand this term in powers of the coupling constants. In higher

1 1
/2 2
- - 2
g+ 69 +2A+4gy> (6.2)
for the thermal Higgs field mass.
All the 1/e poles at O(g°) cancel, and substituting the running parameters of eqs. (£.7)-

1) the ¢ and ¢° orders are seen to be independent of the dimensional regularization
scale. The poles at O(g*) cancel against those in pg coming from the heavy (7T") modes.

7. Numerical results

In this section we plot the final result given by eq. (B.3), into which egs. (I.1), (5.9), (B.10),
((.12), (5.14) and (p.1) are inserted, for various values of parameters. In particular, we

set my = 130 GeV, which is above the experimental lower limit [B]. Note that vacuum
stability considerations lead to a slightly higher limit [B§], but it turns out that the precise
value of mpyg does not affect the result much.
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7.1 SU(2) + fundamental Higgs

Analyzing the result obtained is complicated due to large number of different fields and
couplings between them in the complete standard model. The total effective number of
degrees of freedom of the theory is 106.75, but the contribution from the Higgs field that
drives the transition to this number is just 4 (a complex scalar doublet). Its contribution
to the pressure can therefore be expected to be small. Also, because the strong coupling
constant g5 and the Yukawa coupling of the top quark gy are numerically large when
compared to the other gauge couplings and to the Higgs self coupling, their contribution to
the pressure dominates over the contribution coming from the Higgs sector that is relevant
for the phase transition in the system. It is therefore instructive to consider a simpler
SU(2) + Higgs model for which the total number of degrees of freedom is lower and which
does not include couplings that are not directly related to the phase transition. We achieve
this simply by putting ¢ = g2 = 912/ = 0 and nrp = 0 in the general result. This theory
has also been studied on lattice [B7].

To lowest order the pressure of this theory is the ideal gas pressure of SU(2) gauge
bosons and a massless scalar, given by

2

? 4 T 4
po(T) = 5T (2da + 2di) = =T (7.1)

Normalizing the results to pg, we plot the pressure of this theory to different orders of the
couplings in figure [|. The mass of the Higgs boson is taken to be my = 130 GeV and the
mass of the W boson myy = 80 GeV. As can be seen, at high temperatures the introduction
of interactions reduces the pressure, but since the coupling is small, this effect is small as
well. The perturbative expansion is well behaved in the sense that the absolute value of
each new correction is smaller than that of the previous one. This is in contrast to QCD,
where the expansion fluctuates around the ideal gas pressure unless the temperature is
taken to be asymptotically large.

The result differs from that of QCD also in the sense that there is another manifest
mass scale in the system, the mass of the Higgs boson. The terms 272 and v* in the
expansion of the pressure become more significant and the pressure deviates from the
standard Stefan-Boltzmann law p ~ T* as the temperature gets smaller. Schematically, the
pressure of a gas of massive particles is given to leading order by p ~ T4(1 — g2) > m?T2,
where i labels all the particle types in the system and the masses are the thermal masses,
m? ~ ¢*>T? for the temporal component of the gauge bosons and m? ~ —v? + ¢>T? for the
Higgs scalar. Thus, as the temperature is lowered, the pressure, normalized to the ideal
gas pressure of massless particles, behaves as p/py ~ 1 — g>+ 12 / T2. This is seen explicitly
in figure EI

Although the calculation presented in this paper is not, in principle, valid near the
phase transition, we have plotted in figure [l also the pressure of the broken phase to orders
g% and ¢3, corresponding to a two-loop calculation. This gives us qualitative understanding
about the behavior of the pressure near the phase transition.
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Figure 1: The pressure of SU(2) + fundamental Higgs theory. The Higgs mass is my = 130 GeV
and the W mass is my, = 80 GeV. The critical temperature is 7. = 220 GeV (g?).

The pressure of the broken phase plotted in figure [ is given by (¢/v/2 being the
expectation value of the Higgs field) [L19]

1 1 2 13 1
pep(T, ) = =120% — “Ag* + =14 — =274

— — T4
2 A 9 1927 21"
T2

24 (mu(e)? + 3mep(e)® + Imw (9)?)

T 3 1 3/2 3
(mH(@)z + E92T2 + §>\T2> + 3<mGB(<P)2+

t1on 16

1 3/2
PT+ 5)\T2>

5 3/2
+6mw (¢)° + 3 <mw(<p)2 + —92T2>

O 4

(7.2)
where mpy(¢)? = 3\p? — 12, magp(p)? = M\p? — 12 and my ()% = 1/4g%p? are the zero
temperature masses of the particles, and ¢ = ¢(T) is such that dpgp/dp? = 0. We can
now directly observe that there is a temperature where the pressures of the symmetric
phase and of the broken symmetry phase are equal. Below that the pressure of the broken

symmetry phase is bigger and thus the symmetry of the theory gets spontanously broken.

Another interesting question is how the scale dependence of the expansion behaves
as higher order corrections are added. If the perturbative expansion is well behaved, one
expects the scale dependence to reduce as more terms are included. This is plotted in
figure fl. The temperature is fixed to 7' = 500 GeV. As can be seen, the result depends very
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Figure 2: The scale dependence of the pressure of SU(2) + fundamental Higgs theory. The
temperature is fixed to 7' = 500GeV, the Higgs mass is my = 130GeV and the W mass is
mw = 80GeV.

weakly on the chosen renormalization scale: varying the scale within A/T ~ 1072...10%
changes the result just about two percent. More specifically, it is seen that the result up
to order ¢ is fairly scale independent. This, however, is a numerical coincidence which
stems from the particular values of the parameters g2, A and v and does not appear to
have any fundamental reason. The weak scale dependence reappearing in terms of order
g* and ¢° seems to support this conclusion. A similar phenomenon was observed in pure
gauge theory in [§], where the scale dependence of the pressure up to order g> was seen to

be much weaker than expected.

7.2 The standard model

Here we plot the pressure of the full theory for realistic values of couplings, using tree-level
relations between the measured values of myy, mz, Gr, my, s and the parameters in our
result, as shown in eqgs. (R.13)~(R.15). The unknown Higgs particle mass is set to the lowest
experimentally accepted value myp = 130 GeV.

For an ideal gas of massless SM particles we would have the familiar Stefan-Boltzmann

result

, 2
7
o = 79T—0T4 (2 +2da +2(N7 — 1) + 2d + 2gnp(dp + 1+ Ne(dr + 2))> = 106'753_0T4’

(7.3)
which actually is ap; + gluons. This 7% behavior dominates the pressure, so we again
divide by pg in the plots to see the deviations from massless ideal gas.
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Figure 3: Pressure in different orders of perturbation theory.

The pressure of the full SU(3)xSU(2)xU(1) standard model with 3 families of fermions
is plotted in figure [J. We show the behavior of the result with increasing orders of pertur-
bation theory to find out the relative size of corrections. Unlike the SU(2) + Higgs case,
the result varies strongly with every new order included. This is the known behavior of
QCD, and follows from the large values of g5 and gy, while the higher order terms in g, ¢’
and A are small. The O(g®) correction is still large enough to push the line downwards near
the phase transition. The relative deviation from the ideal gas pressure is of the same order
of magnitude as in QCD, which can be explained by the large number of QCD degrees of
freedom (79 of the total 106.75). As seen above, in the SU(2) + Higgs theory the deviation
is significantly smaller. We have not plotted the pressure all the way down to T, where
the behavior is very singular and the line shoots up to infinity. This stems from the IR
divergences in terms like mZD /ms, since our assumption ms(T") ~ gI" breaks down near T,
and ms3 becomes small.

The effect of varying mpy is shown in figure [, where the relative difference between
pressure at my = 130 GeV and mpy = 200 GeV is plotted. The Higgs particle mass affects
the behavior of the pressure only very weakly, the only change being a slight and almost
constant (times T') increase in the pressure with increasing my. This was expected since
the fundamental scalar only represents 4 of the ~ 100 degrees of freedom.

8. Conclusions

In this paper we have calculated the pressure, or the free energy, of the standard model at
high temperatures to three loops, or to order ¢g°. The result is about 10% smaller than the
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Figure 4: Relative difference between pressure at my = 130 GeV and mpy = 200 GeV.

ideal gas pressure. The effective number of degrees of freedom is thus accordingly reduced
from the standard value of 106.75 used in cosmological computations. The higher order
corrections to the pressure are numerically dominated by contributions coming from the
strong coupling constant and the Yukawa coupling of the top quark. Neglecting them shows
that the perturbative behavior of the underlying gauge + Higgs theory is good, with the
absolute value of each new order in the expansion of the pressure being smaller than that of
the previous one. This conclusion is supported by the expansion’s small dependence on the
renormalization scale. The large numerical values of g5 and gy imply that the expansion
of the pressure of the complete standard model is not as well behaved. However, even then
the convergence of the expansion is better than that of the pressure of pure QCD.

It is possible to extend the expansion presented in this paper by one more order in
powers of the coupling constants by using perturbative calculations, to the order ¢%Ing.
To evaluate that term would require a 4-loop calculation of the vacuum energy densities of
the three-dimensional effective field theory in eq. (b.1]). However, it is impossible to give
an unambiguous meaning for this term until the complete ¢% term is evaluated as well, a
task that already requires the use of nonperturbative methods. The convergence of the
perturbative expansion is rather fast so one can expect this term to be numerically small.

The calculation performed is valid when the temperature of the system is much higher
than the critical temperature of the system. However, unlike in QCD, where the coupling
constant becomes large close to the phase transition and renders the perturbative methods
unreliable, in electroweak theory it is possible to extend these calculations also to the
temperature region close to the phase transition. This requires a modified effective 3d
theory in which the adjoint scalars Ay and By are integrated out but the fundamental scalar
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® is kept, assuming mg is small compared to mp and mf,. This is left to a forthcoming

work [Bg].
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A. Expansion coefficients for pg
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The normalization p(T =

B. Matching coefficients

B.1 Coefficients for the adjoint scalar masses

0) = 0 in the symmetric phase is taken into account in a gy, .

1
Be1 = 3 {CA + TF(N + 1)TF +7’LSTF} (B.1)
L[y B,
Be1 = 3 KBGN + 4> np + ns] (B.2)
_ 2 (=1 A 1 d(=1) A
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dp

Taking into account the different group theoretical factors, the pure gauge and fermionic

parts of these results agree with [f].
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B.2 Coefficients for the fundamental scalar mass
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C. Expansion coefficients for py
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D. Diagrams contributing to the pressure

H3
—=In2+4+ —In —
n2-+ o 3)

) (C.2)

(C.10)
(C.11)
(C.12)
(C.13)
(C.14)
(C.15)
(C.16)

(C.17)

In this appendix we list all the diagrams required for the computation of the pressure. The

notation is as follows: solid lines represent left-handed fermion doublets and right-handed
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fermion singlets (thick) or just fermion doublets (thin), dashed lines fundamental scalars,
dot-dashed lines SU(2) and U(1) (thick) or just SU(2) (thin) adjoint scalars, wavy lines
SU(2) and U(1) (thick) or just SU(2) (thin) gauge bosons and curly lines SU(3) gauge
bosons. Dotted lines stand for ghosts.

Defining the integration measures as

f=(5) 7 [ogs 0.1)

po=2nnT

i{P} <67A2> 2 /(217?; 5626 (D2)

=(2n+1)7T

/pE <ejlf> / (g;)jgge’ (D.3)

the diagrams are given in terms of the following integrals:

1, = ip (Plg)n, (D.4)
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The integrals are evaluated in appendices A and B of [ff] and in [B9].
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D.1 Diagrams in the full theory

Here we list the results for the diagrams from the 4d theory.
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D.2 Diagrams in the effective theory

The required d = 3 — 2¢ dimensional integrals have been worked out in the literature except
for the particular combination of diffenent masses and massless propagators in eq. (ID.90).
The results are given here in terms of the integrals I, J, K, M, N and L given in the
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